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LIGO Executive summary 500

e S1 science run took 3 weeks of data (Aug. 23 — Sep. 9, 2003)
on 4 detectors (LIGO L1, H1, H2, and GEO600).

e Data analyzed for signal from PSR J1939+2134, using two methods:

x Frequency-domain frequentist analysis = hp < (2.8 4£0.3) x 10722
» Time-domain Bayesian analysis = ho < (1.0£0.1) x 10722

e Upper limits were set in each case

e For this pulsar, hy < 1.0 x 10722 corresponds to ellipticity ratio
(non-axisymmetry) e < 7.5 x 107°.
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LIGO GWs from pulsars

e Pulsars = spinning neutron stars
e Emit gravitational waves if they are non-axisymmetric

e Possible mechanisms:
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LIGO GWs from pulsars

e Pulsars = spinning neutron stars
e Emit gravitational waves if they are non-axisymmetric

e Possible mechanisms:

* “Mountains” on solid crust

* “Trapped” magnetic fields

* Unstable fluid modes

* Compositional/thermal inhomogeneities
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LIGO GWs from pulsars 500

e Pulsars = spinning neutron stars
e Emit gravitational waves if they are non-axisymmetric

e Possible mechanisms:

* “Mountains” on solid crust
* “Trapped” magnetic fields

= Most likely for known pulsars

* Emit primarily at GW frequency = 2xspin frequency
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LIGO GWs from pulsars

e Intrinsic amplitude:

_ I 1 kpc f >/ e
_ 23 gw
o = (106> 107) (1045gcm2> ( r ) (1 kHz) (10—5)

e Signal in detector is:

1 + cos?t

h(t) = ho {F+(t, V) cos|®(t) + ¢o| + Fx (t, 1)) cosesin[P(t) + qbo]}

F., Fy, = polarization beam patterns (known)
® = observed rotation phase (known)
ho = intrinsic amplitude (above)

1 = polarization angle

¢ = Inclination angle
00 phase offset
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LIGO GWs from pulsars

e At a 1% false alarm threshold, required amplitude for 10% false dismissal is:
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LIGO | G0 and GEO during S1 OIGE T

e First LIGO/GEO science run (S1): August 23 — September 9, 2002
17 days = 408 hours

e Total of four interferometers participating:

* LIGO Livingston L1 (4 km):
duty cycle 41.7%, total locked time: 170 hours

* LIGO Hanford H1 (4 km):
duty cycle 57.6%, total locked time: 235 hours

* LIGO Hanford H2 (2 km):
duty cycle 73.1%, total locked time: 298 hours

* GEO (600 m):
duty cycle 98.5%! total locked time: 396 hours
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LIGO

Instrumental sensitivity:
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LIGO and GEO during S1

oma@

e Coincidence not important,
only total uptime

e Shorter Iinstruments had
higher uptime

= Comparable sensitivity at
frequency of interest!
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LIGO rrequency-domain analysis °s55

e JF-statistic is a quadrature sum of 4 linear filters.

e In Gaussian noise, it is a maximum likelihood estimator of signal amplitude,
implicitly maximized over ¢, ¥, and cos ¢.
x 2F follows a y? distribution with 4 degrees of freedom and non-centrality
parameter A o [ h(t)*dt.

e In generic noise, compute p(F|ad) using Monte-Carlo injections of simulated
signals.

e Originally developed for pulsar searches: code exists to compute F
simultaneously over broad frequency ranges.
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LIGO Frequency-domain analysis “soo |

e Frequentist approach: Determine the value F* of the statistic for our source
from our data.

e Determine p(F|hy) for a range of hy.

p (K| h,=1) p (F| h,=2

.fh*-_l r'\\
L] I" -
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LIGO rrequency-domain analysis °s55

e Frequentist approach: Determine the value F* of the statistic for our source
from our data.

e Determine p(F|hy) for a range of hy.

e 95% frequentist upper limit h3; Is the value such that, for repeated trials with
a signal hy > hgs, we would obtain F > F* more than 95% of the time:

0.95 = / p(Flho = his) dF

e Extra detail: When computing p(F|hg) via Monte-Carlo, inject signals with
worst possible orientation v, . This gives a conservative upper limit.
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LIGO Frequency-domain analysis soo

The raw data: /S, (10~2°Hz~'/2) versus frequency in Hz.

GEO 600 Livingston 4km ° NOte SpeCtral
36.5) ’ 1.44 disturbance in GEO600
35.5¢
1.4
1281 12‘83 1285 1281 12‘83 1285
Hanford;4km Hanford 2km
4.8t | 252
4.6 2.48
1281 12‘83 1285 1281 12‘83 1285
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LIGO rrequency-domain analysis °s55

Probability distributions:

0.12 : s o All except GEO600 are
01 ’\ ----------- o GEOG““ g | rastondm consistent with Gaussian
008/ SR A e statistics  (Kolmogorov-
o Smirnov test)

e 95% upper limits:

0.06 ; : . . 2?* 35
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0.04p 0’ ------ t 1. --------- ---------- ---------- GEO 1.5 1.9 x 1021
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LIGO Time-domain analysis e

e Signal is heterodyned by (known) instantaneous frequency of J1939+2134

* Reduces pulsar signal to DC
* Removes Doppler modulation from signal

e Resampled at 1/minute, and noise estimated for each minute

= data Bj + o, every minute.
e Data are then fit to a signal model:
y(t; @) = thoe®? [Fy(t, ) (1 + cos® 1) — 2Fx (t,1)) cos (]

where a@ = (hg, ¢o, 1, cos ) are unknown parameters.
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LIGO Time-domain analysis e

e Bayesian approach: Compute joint probability distribution over all of @, using
uniform priors on hg, ¢g, ¥, cos .

p(@{Bx}) oc p(@) - p({Br}|a)
T T T

posterior prior likelihood

12
Br—y(tg;d)
ok

In Gaussian noise, likelihood e—XQ/Q, where x?(@) = >,

e TO get probability distribution on hg, marginalize over other parameters:
p(hol{B1}) o [ deo [ dip [dcost e X/?
e 95% confidence upper limit hg5 defined by:

hgs
0.95 / dho p(hol{B:})
0
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LIGO Time-domain analysis 500

The raw data: /S, (Hz~'/2) versus time in days

x 107 x 107"
2.5 ; ; ; 15 ; ;
GEO 600 Livingston 4km
2t .
1.
15;, .
!
0.5} . L
. babooi Whina: il
0 5 10 15 20 0 5 10 15 20
x 10 ° x 10°
2.5 ; ; ; 1.5 ; ;
Hanford 4km Hanford 2km
2.
i 11 , .
1.5} 1 S :
N . | T
Y ” i | R SRR 1 TR R S
0.5 . . | ".H“;. ) ot
A 1001V " MM
0 ‘ ‘ ‘ 0 ‘ ‘ ‘
0 5 10 15 20 0 5 10 15 20

CaJAGWR 2003-04-15 18



LIGO

Gaussianity of resampled data By.:
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Time-domain analysis 500
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e GEO is not in fact consistent

with Gaussian distribution.

* Spectral disturbance near
this frequency

* Might raise our upper limit
by about x1.5

e LIGO detectors are

consistent with Gaussian
distribution.
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LIGO Time-domain analysis 600

Posterior probability distributions:
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LIGO Time-domain analysis e

e Can also compute joint probability distribution:

p(@lall data) = p(|GEO) - p(@|L1) - p(@|H1) - p(@|H2)

e Marginalizing gives:
h95 = 1.0 x 10_22
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LIGO Comparison of results

Frequentist UL Bayesian UL

hgs hos
GEO 1.9 x 10721 2.1 x 10721
H1 6.4 x 10722 2.7 x 10722
H2 4.7 x 10722 2.2 x 10722
L1 2.8 x 10722 1.4 x 1022
Joint — 1.0 x 10722

e PSR J1939+2134 is at 3.6 kpc
= ellipticity e < 7.5 x 10™°
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LIGO  comparison of results ~ * .

e Bayesian and frequentist analyses answer two different questions:

* Bayesian: Given our model and priors, for what value hgs; are we 95%
sure that the true hg lies below this level?
= Threshold on p(hg|data, priors)

* Frequentist: Given the measured value of F*, for what value hg: would a

signal with hg > h§s yield F > F* 95% of the time?
= Threshold on p(data|hg, orientation)

e It is therefore not surprising that the values hgs and A5, do not in general
agree.

e Discrepancy largely due to worst-case (conservative) orientation chosen for
frequentist approach.
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LIGO Comparison of results 500

Other experimental results:

e Best UL on continuous signals is from a bar detector: 2.9 x 10~2% around
921.3 Hz from Galactic centre

* but no known pulsar at that frequency/location.
e Best previous UL on PSR J1939+2134 is 1 x 10~2° (using a divided bar).

e Indirect observational UL is 2 x 10~27 based on spindown rate.
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LIGO

Second science run (S2) has just completed.
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Future searches

e Order of magnitude
Improvement in

sensitivity!

e We want to start in on
new data as soon as

possible.
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LIGO Future searches

e Targeted searches on all known pulsars.

e Directed searches on known systems with unknown phase evolution (e.g.
xray binaries).

e Broad-band wide-area searches.
= Set upper limits on unknown sources.

e As instruments continue to improve, we may make actual detections of
gravitational emissions!
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