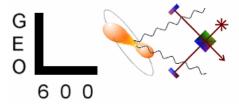


First LIGO/GEO Upper Limits on Pulsar Gravitational Emissions

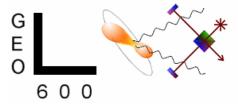
Teviet Creighton

For the Pulsar Upper Limits Working Group of the LIGO Scientific Collaboration

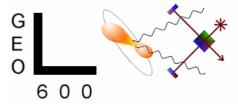
CaJAGWR Seminar April 15, 2003



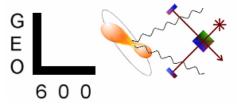
 S1 science run took 3 weeks of data (Aug. 23 – Sep. 9, 2003) on 4 detectors (LIGO L1, H1, H2, and GEO600).



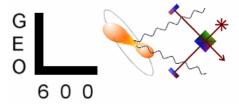
- S1 science run took 3 weeks of data (Aug. 23 Sep. 9, 2003) on 4 detectors (LIGO L1, H1, H2, and GEO600).
- Data analyzed for signal from PSR J1939+2134, using two methods:



- S1 science run took 3 weeks of data (Aug. 23 Sep. 9, 2003) on 4 detectors (LIGO L1, H1, H2, and GEO600).
- Data analyzed for signal from PSR J1939+2134, using two methods:
 - ★ Frequency-domain frequentist analysis



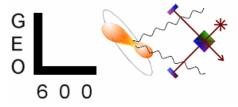
- S1 science run took 3 weeks of data (Aug. 23 Sep. 9, 2003) on 4 detectors (LIGO L1, H1, H2, and GEO600).
- Data analyzed for signal from PSR J1939+2134, using two methods:
 - ★ Frequency-domain frequentist analysis
 - ⋆ Time-domain Bayesian analysis



- S1 science run took 3 weeks of data (Aug. 23 Sep. 9, 2003) on 4 detectors (LIGO L1, H1, H2, and GEO600).
- Data analyzed for signal from PSR J1939+2134, using two methods:
 - ★ Frequency-domain frequentist analysis
 - ⋆ Time-domain Bayesian analysis

$$\Rightarrow h_0 < (2.8 \pm 0.3) \times 10^{-22} \Rightarrow h_0 < (1.0 \pm 0.1) \times 10^{-22}$$

Upper limits were set in each case



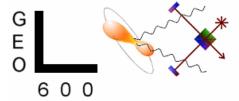
- S1 science run took 3 weeks of data (Aug. 23 Sep. 9, 2003) on 4 detectors (LIGO L1, H1, H2, and GEO600).
- Data analyzed for signal from PSR J1939+2134, using two methods:
 - ★ Frequency-domain frequentist analysis
 - ⋆ Time-domain Bayesian analysis

$$\Rightarrow h_0 < (2.8 \pm 0.3) \times 10^{-22}$$

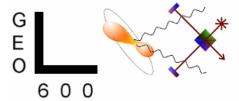
$$\Rightarrow h_0 < (1.0 \pm 0.1) \times 10^{-22}$$

- Upper limits were set in each case
- For this pulsar, $h_0 < 1.0 \times 10^{-22}$ corresponds to ellipticity ratio (non-axisymmetry) $\epsilon < 7.5 \times 10^{-5}$.

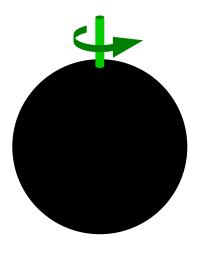
Outline

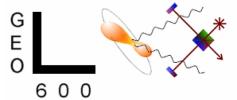


- I. Gravitational waves from pulsars
- II. LIGO and GEO during S1
- III. Frequency-domain analysis method
- IV. Time-domain analysis method
- V. Comparison of results
- VI. Future searches

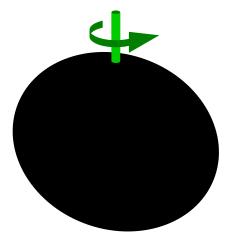


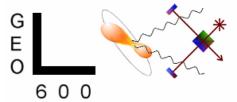
• Pulsars = spinning neutron stars



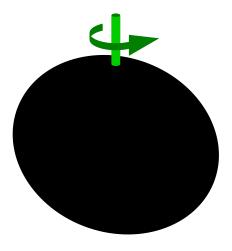


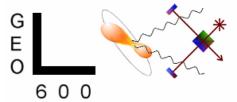
- Pulsars = spinning neutron stars
- Emit gravitational waves if they are non-axisymmetric



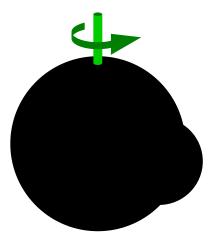


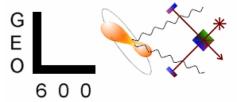
- Pulsars = spinning neutron stars
- Emit gravitational waves if they are non-axisymmetric
- Possible mechanisms:



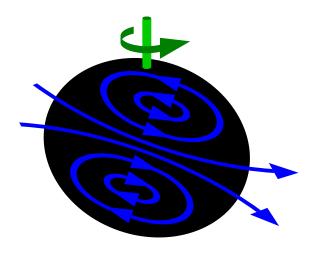


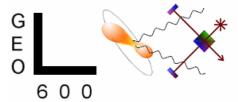
- Pulsars = spinning neutron stars
- Emit gravitational waves if they are non-axisymmetric
- Possible mechanisms:
 - * "Mountains" on solid crust



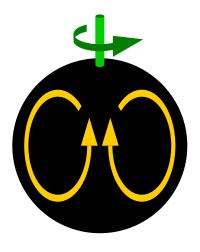


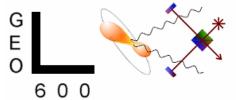
- Pulsars = spinning neutron stars
- Emit gravitational waves if they are non-axisymmetric
- Possible mechanisms:
 - * "Mountains" on solid crust
 - ⋆ "Trapped" magnetic fields



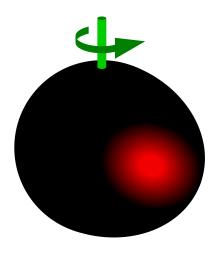


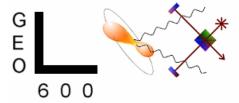
- Pulsars = spinning neutron stars
- Emit gravitational waves if they are non-axisymmetric
- Possible mechanisms:
 - * "Mountains" on solid crust
 - ⋆ "Trapped" magnetic fields
 - ⋆ Unstable fluid modes



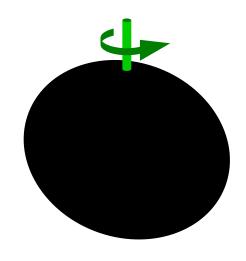


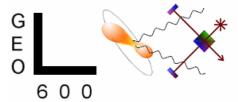
- Pulsars = spinning neutron stars
- Emit gravitational waves if they are non-axisymmetric
- Possible mechanisms:
 - * "Mountains" on solid crust
 - ⋆ "Trapped" magnetic fields
 - * Unstable fluid modes
 - ⋆ Compositional/thermal inhomogeneities



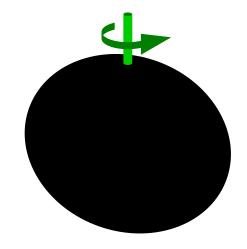


- Pulsars = spinning neutron stars
- Emit gravitational waves if they are non-axisymmetric
- Possible mechanisms:
 - * "Mountains" on solid crust
 - ⋆ "Trapped" magnetic fields
 - * Unstable fluid modes
 - * Compositional/thermal inhomogeneities

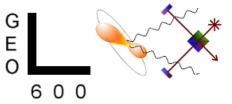




- Pulsars = spinning neutron stars
- Emit gravitational waves if they are non-axisymmetric
- Possible mechanisms:
 - * "Mountains" on solid crust
 - ⋆ "Trapped" magnetic fields
 - * Unstable fluid modes
 - * Compositional/thermal inhomogeneities

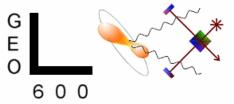


- → Most likely for known pulsars
 - \star Emit primarily at GW frequency = $2 \times \text{spin}$ frequency



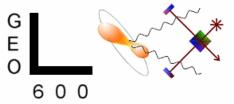
• Intrinsic amplitude:

$$h_0 = \frac{4\pi^2 G}{c^4} \times \frac{If_{\rm gw}^2}{r}$$



• Intrinsic amplitude:

$$h_0 = (1.06 \times 10^{-23}) \left(\frac{I}{10^{45} \text{g cm}^2} \right) \left(\frac{1 \text{ kpc}}{r} \right) \left(\frac{f_{\text{gw}}}{1 \text{ kHz}} \right)^2 \left(\frac{\epsilon}{10^{-5}} \right)$$

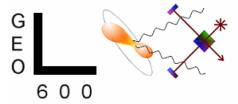


Intrinsic amplitude:

$$h_0 = (1.06 \times 10^{-23}) \left(\frac{I}{10^{45} \text{g cm}^2} \right) \left(\frac{1 \text{ kpc}}{r} \right) \left(\frac{f_{\text{gw}}}{1 \text{ kHz}} \right)^2 \left(\frac{\epsilon}{10^{-5}} \right)$$

Signal in detector is:

$$h(t) = h_0 \left\{ F_+(t, \psi) \frac{1 + \cos^2 \iota}{2} \cos[\Phi(t) + \phi_0] + F_{\times}(t, \psi) \cos \iota \sin[\Phi(t) + \phi_0] \right\}$$



Intrinsic amplitude:

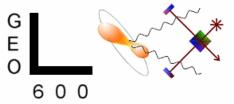
$$h_0 = (1.06 \times 10^{-23}) \left(\frac{I}{10^{45} \text{g cm}^2} \right) \left(\frac{1 \text{ kpc}}{r} \right) \left(\frac{f_{\text{gw}}}{1 \text{ kHz}} \right)^2 \left(\frac{\epsilon}{10^{-5}} \right)$$

Signal in detector is:

$$h(t) = h_0 \left\{ F_+(t, \psi) \frac{1 + \cos^2 \iota}{2} \cos[\Phi(t) + \phi_0] + F_{\times}(t, \psi) \cos \iota \sin[\Phi(t) + \phi_0] \right\}$$

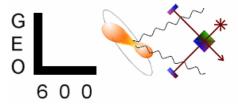
$$F_+, F_ imes = ext{polarization beam patterns (known)}$$
 $\Phi = ext{observed rotation phase (known)}$

$$\vec{a} \begin{cases} h_0 &= ext{intrinsic amplitude (above)} \\ \psi &= ext{polarization angle} \\ \iota &= ext{inclination angle} \\ \phi_0 &= ext{phase offset} \end{cases}$$

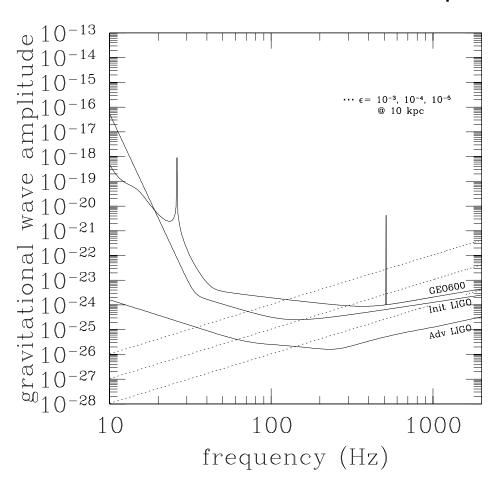


• At a 1% false alarm threshold, required amplitude for 10% false dismissal is:

$$\langle h_0 \rangle = 11.4 \sqrt{S_h(f_{\rm gw})/T_{\rm obs}}$$

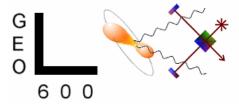


• At a 1% false alarm threshold, required amplitude for 10% false dismissal is:

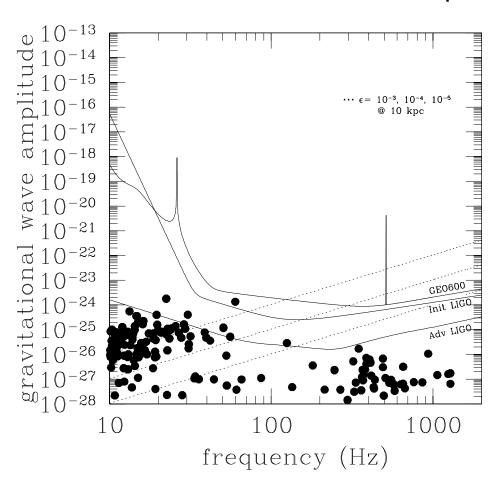


$$\langle h_0 \rangle = 11.4 \sqrt{S_h(f_{\rm gw})/T_{\rm obs}}$$

3 week integration

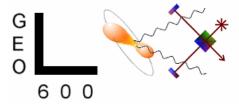


• At a 1% false alarm threshold, required amplitude for 10% false dismissal is:

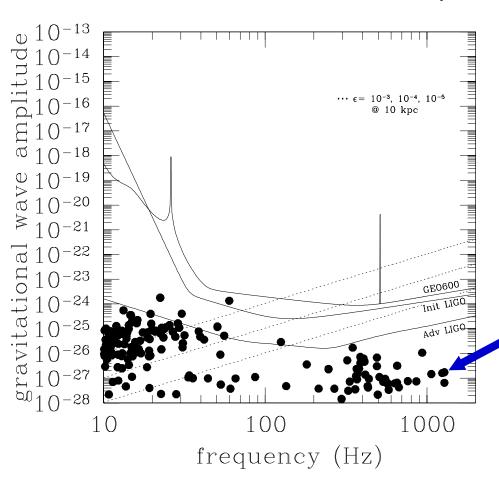


$$\langle h_0 \rangle = 11.4 \sqrt{S_h(f_{\rm gw})/T_{\rm obs}}$$

- 3 week integration
- Known pulsars

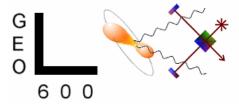


At a 1% false alarm threshold, required amplitude for 10% false dismissal is:

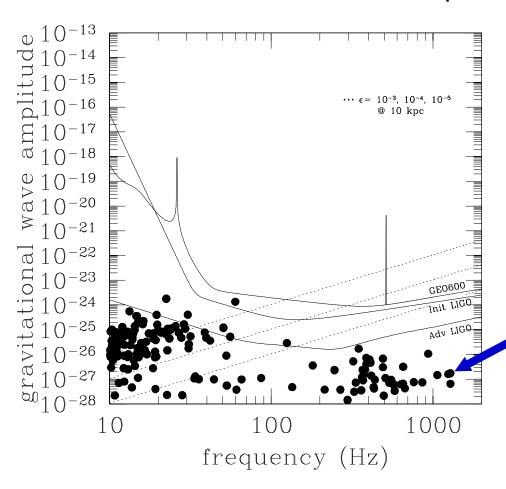


$$\langle h_0 \rangle = 11.4 \sqrt{S_h(f_{\rm gw})/T_{\rm obs}}$$

- 3 week integration
- Known pulsars
 - PSR J1939+2134 $f_{\rm gw} = 1283.86 {\rm Hz}$



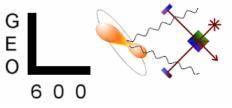
• At a 1% false alarm threshold, required amplitude for 10% false dismissal is:



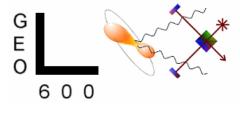
$$\langle h_0 \rangle = 11.4 \sqrt{S_h(f_{\rm gw})/T_{\rm obs}}$$

- 3 week integration
- Known pulsars
- ho PSR J1939+2134 $f_{\rm gw} = 1283.86 {\rm Hz}$
- ⇒ No detection expected!

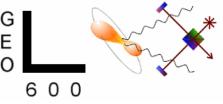
Outline



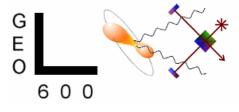
- I. Gravitational waves from pulsars
- II. LIGO and GEO during S1
- III. Frequency-domain analysis method
- IV. Time-domain analysis method
- V. Comparison of results
- VI. Future searches



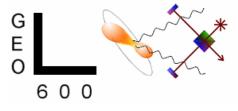
First LIGO/GEO science run (S1): August 23 – September 9, 2002
 17 days = 408 hours



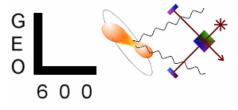
- First LIGO/GEO science run (S1): August 23 September 9, 2002
 17 days = 408 hours
- Total of four interferometers participating:



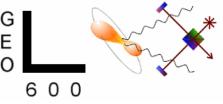
- First LIGO/GEO science run (S1): August 23 September 9, 2002
 17 days = 408 hours
- Total of four interferometers participating:
 - ★ LIGO Livingston L1 (4 km)



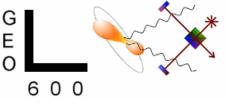
- First LIGO/GEO science run (S1): August 23 September 9, 2002
 17 days = 408 hours
- Total of four interferometers participating:
 - ★ LIGO Livingston L1 (4 km)
 - ★ LIGO Hanford H1 (4 km)



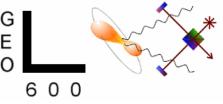
- First LIGO/GEO science run (S1): August 23 September 9, 2002
 17 days = 408 hours
- Total of four interferometers participating:
 - ★ LIGO Livingston L1 (4 km)
 - ★ LIGO Hanford H1 (4 km)
 - ★ LIGO Hanford H2 (2 km)



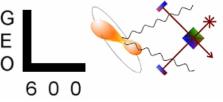
- First LIGO/GEO science run (S1): August 23 September 9, 2002
 17 days = 408 hours
- Total of four interferometers participating:
 - ★ LIGO Livingston L1 (4 km)
 - ★ LIGO Hanford H1 (4 km)
 - ★ LIGO Hanford H2 (2 km)
 - ★ GEO (600 m)



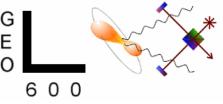
- First LIGO/GEO science run (S1): August 23 September 9, 2002
 17 days = 408 hours
- Total of four interferometers participating:
 - ★ LIGO Livingston L1 (4 km): duty cycle 41.7%, total locked time: 170 hours
 - ★ LIGO Hanford H1 (4 km)
 - ★ LIGO Hanford H2 (2 km)
 - * GEO (600 m)



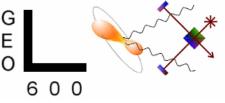
- First LIGO/GEO science run (S1): August 23 September 9, 2002
 17 days = 408 hours
- Total of four interferometers participating:
 - ★ LIGO Livingston L1 (4 km): duty cycle 41.7%, total locked time: 170 hours
 - ★ LIGO Hanford H1 (4 km): duty cycle 57.6%, total locked time: 235 hours
 - ★ LIGO Hanford H2 (2 km)
 - * GEO (600 m)



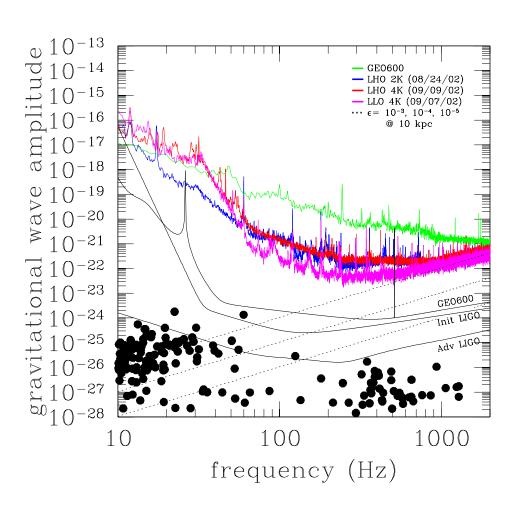
- First LIGO/GEO science run (S1): August 23 September 9, 2002
 17 days = 408 hours
- Total of four interferometers participating:
 - ★ LIGO Livingston L1 (4 km): duty cycle 41.7%, total locked time: 170 hours
 - LIGO Hanford H1 (4 km): duty cycle 57.6%, total locked time: 235 hours
 - ★ LIGO Hanford H2 (2 km): duty cycle 73.1%, total locked time: 298 hours
 - ★ GEO (600 m)

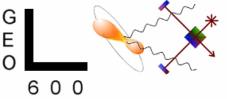


- First LIGO/GEO science run (S1): August 23 September 9, 2002
 17 days = 408 hours
- Total of four interferometers participating:
 - ★ LIGO Livingston L1 (4 km): duty cycle 41.7%, total locked time: 170 hours
 - ★ LIGO Hanford H1 (4 km): duty cycle 57.6%, total locked time: 235 hours
 - LIGO Hanford H2 (2 km): duty cycle 73.1%, total locked time: 298 hours
 - ★ GEO (600 m): duty cycle 98.5%! total locked time: 396 hours

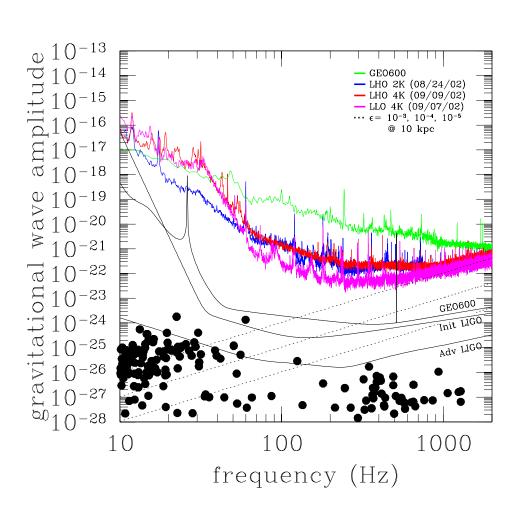


Instrumental sensitivity:

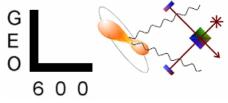




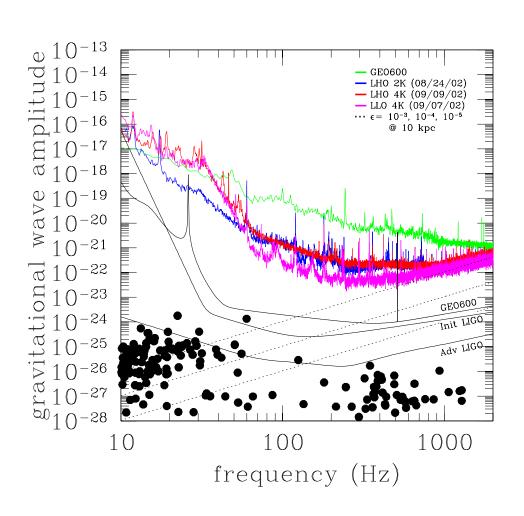
Instrumental sensitivity:



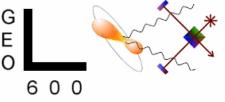
 Coincidence not important, only total uptime



Instrumental sensitivity:

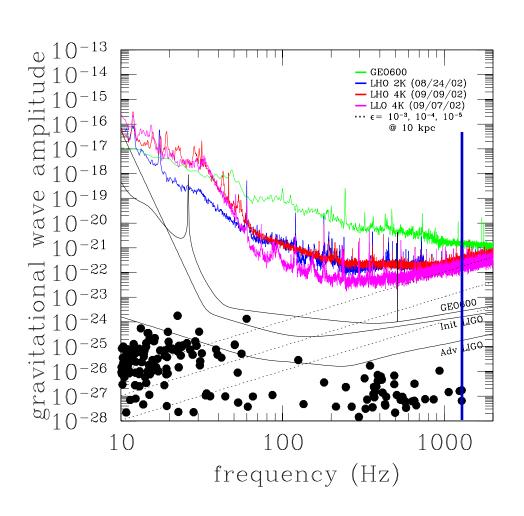


- Coincidence not important, only total uptime
- Shorter instruments had higher uptime



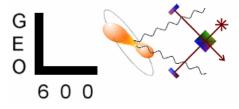
9

Instrumental sensitivity:



- Coincidence not important, only total uptime
- Shorter instruments had higher uptime
- ⇒ Comparable sensitivity at frequency of interest!

Outline



- Gravitational waves from pulsars
- II. LIGO and GEO during S1
- III. Frequency-domain analysis method
- IV. Time-domain analysis method
- V. Comparison of results
- VI. Future searches

• \mathcal{F} -statistic is a quadrature sum of 4 linear filters.

- \mathcal{F} -statistic is a quadrature sum of 4 linear filters.
- In Gaussian noise, it is a *maximum likelihood* estimator of signal amplitude, implicitly maximized over ϕ_0 , ψ , and $\cos \iota$.

- \mathcal{F} -statistic is a quadrature sum of 4 linear filters.
- In Gaussian noise, it is a *maximum likelihood* estimator of signal amplitude, implicitly maximized over ϕ_0 , ψ , and $\cos \iota$.
 - * $2\mathcal{F}$ follows a χ^2 distribution with 4 degrees of freedom and non-centrality parameter $\lambda \propto \int h(t)^2 dt$.

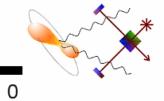
- In Gaussian noise, it is a *maximum likelihood* estimator of signal amplitude, implicitly maximized over ϕ_0 , ψ , and $\cos \iota$.
 - * $2\mathcal{F}$ follows a χ^2 distribution with 4 degrees of freedom and non-centrality parameter $\lambda \propto \int h(t)^2 dt$.
- In generic noise, compute $p(\mathcal{F}|\vec{a})$ using Monte-Carlo injections of simulated signals.

- F-statistic is a quadrature sum of 4 linear filters.
- In Gaussian noise, it is a *maximum likelihood* estimator of signal amplitude, implicitly maximized over ϕ_0 , ψ , and $\cos \iota$.
 - * $2\mathcal{F}$ follows a χ^2 distribution with 4 degrees of freedom and non-centrality parameter $\lambda \propto \int h(t)^2 dt$.
- In generic noise, compute $p(\mathcal{F}|\vec{a})$ using Monte-Carlo injections of simulated signals.
- Originally developed for pulsar *searches*: code exists to compute \mathcal{F} simultaneously over broad frequency ranges.

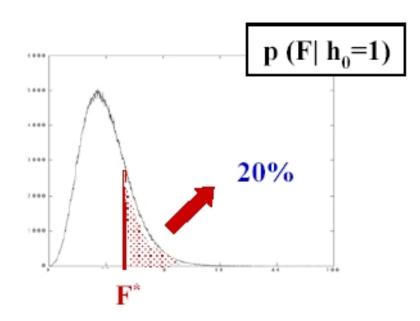
S O O

• Frequentist approach: Determine the value \mathcal{F}^* of the statistic for our source from our data.

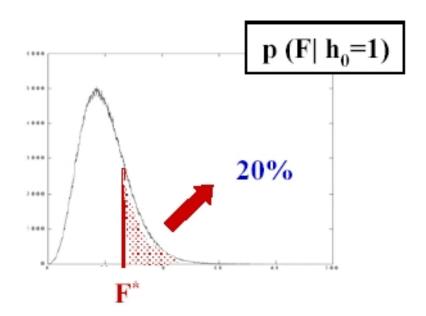
- Frequentist approach: Determine the value \mathcal{F}^* of the statistic for our source from our data.
- Determine $p(\mathcal{F}|h_0)$ for a range of h_0 .

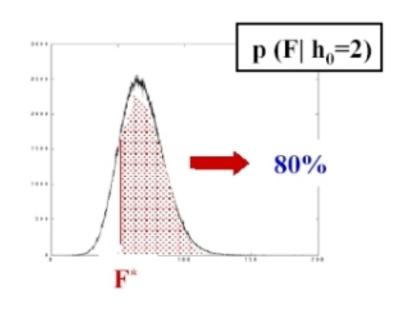


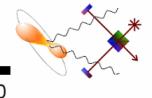
- Frequentist approach: Determine the value \mathcal{F}^* of the statistic for our source from our data.
- Determine $p(\mathcal{F}|h_0)$ for a range of h_0 .



- Frequentist approach: Determine the value \mathcal{F}^* of the statistic for our source from our data.
- Determine $p(\mathcal{F}|h_0)$ for a range of h_0 .

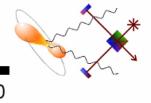






- Frequentist approach: Determine the value \mathcal{F}^* of the statistic for our source from our data.
- Determine $p(\mathcal{F}|h_0)$ for a range of h_0 .
- 95% frequentist upper limit h_{95}^* is the value such that, for repeated trials with a signal $h_0 > h_{95}^*$, we would obtain $\mathcal{F} > \mathcal{F}^*$ more than 95% of the time:

$$0.95 = \int_{\mathcal{F}^*}^{\infty} p(\mathcal{F}|h_0 = h_{95}^*) \ d\mathcal{F}$$

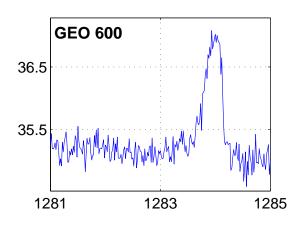


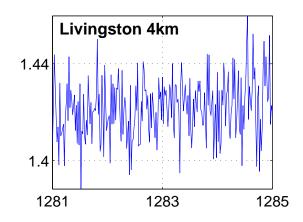
- Frequentist approach: Determine the value \mathcal{F}^* of the statistic for our source from our data.
- Determine $p(\mathcal{F}|h_0)$ for a range of h_0 .
- 95% frequentist upper limit h_{95}^* is the value such that, for repeated trials with a signal $h_0 > h_{95}^*$, we would obtain $\mathcal{F} > \mathcal{F}^*$ more than 95% of the time:

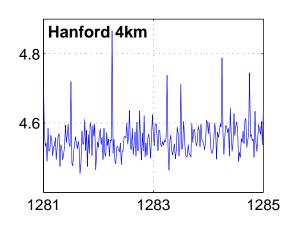
$$0.95 = \int_{\mathcal{F}^*}^{\infty} p(\mathcal{F}|h_0 = h_{95}^*) \ d\mathcal{F}$$

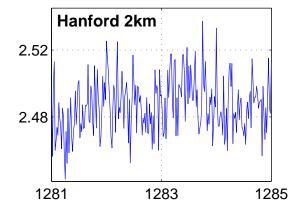
• Extra detail: When computing $p(\mathcal{F}|h_0)$ via Monte-Carlo, inject signals with worst possible orientation ψ , ι . This gives a conservative upper limit.

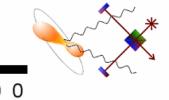
The raw data: $\sqrt{S_h}$ ($10^{-20} \mathrm{Hz}^{-1/2}$) versus frequency in Hz.



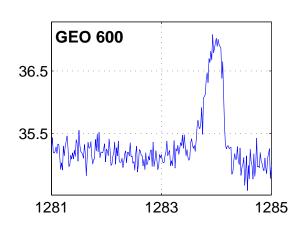


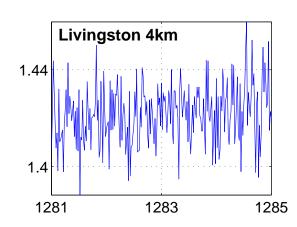


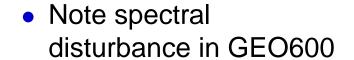


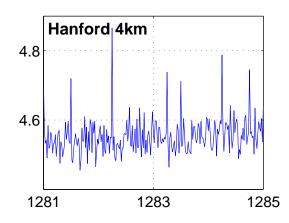


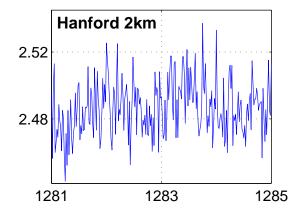
The raw data: $\sqrt{S_h}$ ($10^{-20} \mathrm{Hz}^{-1/2}$) versus frequency in Hz.



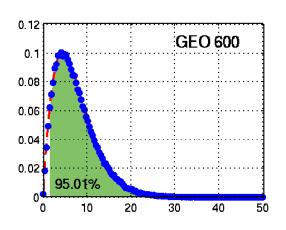


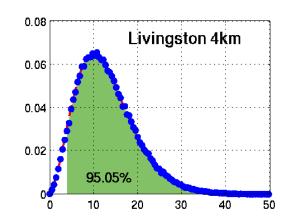


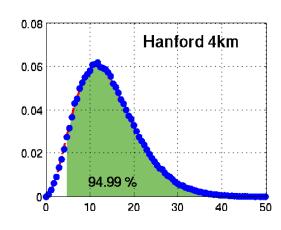


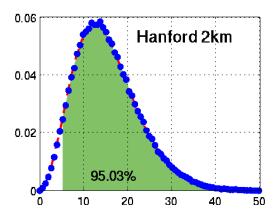


Probability distributions:

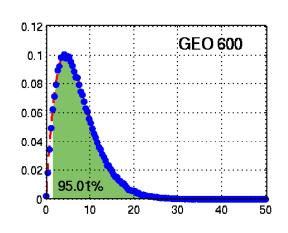


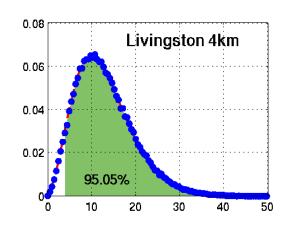


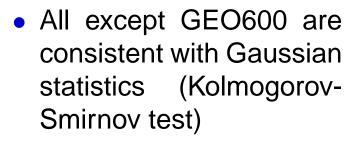


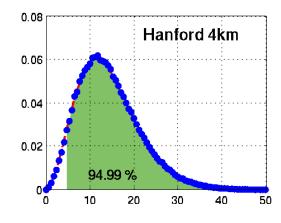


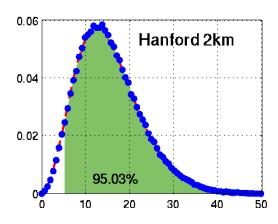
Probability distributions:

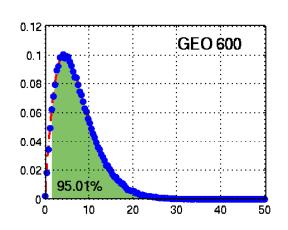


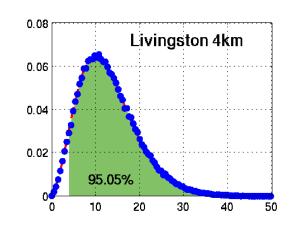


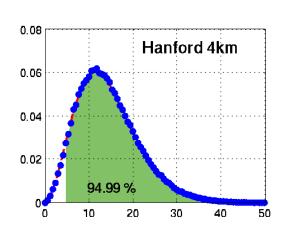


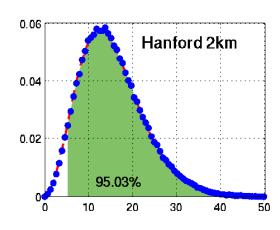








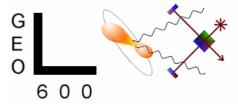




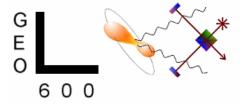
- All except GEO600 are consistent with Gaussian statistics (Kolmogorov-Smirnov test)
- 95% upper limits:

	$2\mathcal{F}^*$	h_{95}^*
GEO	1.5	1.9×10^{-21}
L1	3.9	2.8×10^{-22}
H1	4.7	6.4×10^{-22}
H2	5.2	4.7×10^{-22}

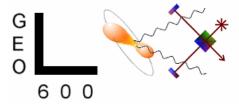
Outline



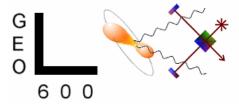
- I. Gravitational waves from pulsars
- II. LIGO and GEO during S1
- III. Frequency-domain analysis method
- IV. Time-domain analysis method
- V. Comparison of results
- VI. Future searches



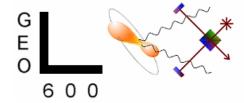
• Signal is *heterodyned* by (known) instantaneous frequency of J1939+2134



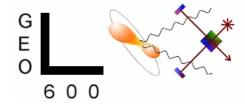
- Signal is *heterodyned* by (known) instantaneous frequency of J1939+2134
 - * Reduces pulsar signal to DC



- Signal is *heterodyned* by (known) instantaneous frequency of J1939+2134
 - ⋆ Reduces pulsar signal to DC
 - ★ Removes Doppler modulation from signal



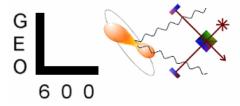
- Signal is *heterodyned* by (known) instantaneous frequency of J1939+2134
 - ⋆ Reduces pulsar signal to DC
 - ★ Removes Doppler modulation from signal
- Resampled at 1/minute, and noise estimated for each minute
 - \Rightarrow data $B_k \pm \sigma_k$ every minute.



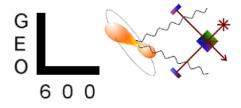
- Signal is heterodyned by (known) instantaneous frequency of J1939+2134
 - ⋆ Reduces pulsar signal to DC
 - ⋆ Removes Doppler modulation from signal
- Resampled at 1/minute, and noise estimated for each minute
 - \Rightarrow data $B_k \pm \sigma_k$ every minute.
- Data are then fit to a signal model:

$$y(t; \vec{a}) = \frac{1}{4}h_0 e^{2i\phi_0} \left[F_+(t, \psi)(1 + \cos^2 \iota) - 2F_{\times}(t, \psi) \cos \iota \right]$$

where $\vec{a} = (h_0, \phi_0, \psi, \cos \iota)$ are unknown parameters.

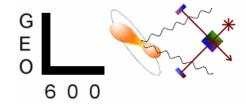


• Bayesian approach: Compute joint probability distribution over all of \vec{a} , using uniform priors on h_0 , ϕ_0 , ψ , $\cos \iota$:



• Bayesian approach: Compute joint probability distribution over all of \vec{a} , using uniform priors on h_0 , ϕ_0 , ψ , $\cos \iota$:

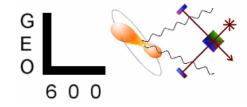
$$p(\vec{a}|\{B_k\}) \propto p(\vec{a}) \cdot p(\{B_k\}|\vec{a})$$
 $\uparrow \qquad \uparrow \qquad \uparrow$
posterior prior likelihood



• Bayesian approach: Compute joint probability distribution over all of \vec{a} , using uniform priors on h_0 , ϕ_0 , ψ , $\cos \iota$:

$$p(\vec{a}|\{B_k\}) \propto p(\vec{a}) \cdot p(\{B_k\}|\vec{a})$$
 $\uparrow \qquad \uparrow$
posterior prior likelihood

In Gaussian noise, likelihood $\propto e^{-\chi^2/2}$, where $\chi^2(\vec{a}) = \sum_k \left|\frac{B_k - y(t_k; \vec{a})}{\sigma_k}\right|^2$



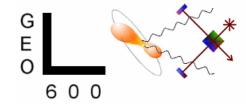
• Bayesian approach: Compute joint probability distribution over all of \vec{a} , using uniform priors on h_0 , ϕ_0 , ψ , $\cos \iota$:

$$p(\vec{a}|\{B_k\}) \propto p(\vec{a}) \cdot p(\{B_k\}|\vec{a})$$
 $\uparrow \qquad \uparrow \qquad \uparrow$
posterior prior likelihood

In Gaussian noise, likelihood $\propto e^{-\chi^2/2}$, where $\chi^2(\vec{a}) = \sum_k \left| \frac{B_k - y(t_k; \vec{a})}{\sigma_k} \right|^2$

• To get probability distribution on h_0 , marginalize over other parameters:

$$p(h_0|\{B_k\}) \propto \int d\phi_0 \int d\psi \int d\cos \iota \ e^{-\chi^2/2}$$



• Bayesian approach: Compute joint probability distribution over all of \vec{a} , using uniform priors on h_0 , ϕ_0 , ψ , $\cos \iota$:

$$p(\vec{a}|\{B_k\}) \propto p(\vec{a}) \cdot p(\{B_k\}|\vec{a})$$
 $\uparrow \qquad \uparrow \qquad \uparrow$
posterior prior likelihood

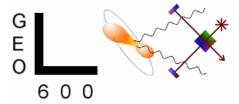
In Gaussian noise, likelihood $\propto e^{-\chi^2/2}$, where $\chi^2(\vec{a}) = \sum_k \left| \frac{B_k - y(t_k; \vec{a})}{\sigma_k} \right|^2$

• To get probability distribution on h_0 , marginalize over other parameters:

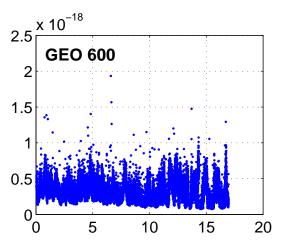
$$p(h_0|\{B_k\}) \propto \int d\phi_0 \int d\psi \int d\cos \iota \ e^{-\chi^2/2}$$

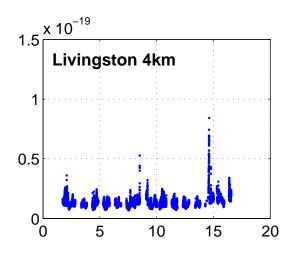
• 95% confidence upper limit h_{95} defined by:

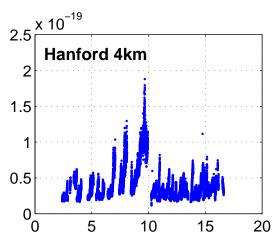
$$0.95 = \int_0^{h_{95}} dh_0 \ p(h_0 | \{B_k\})$$

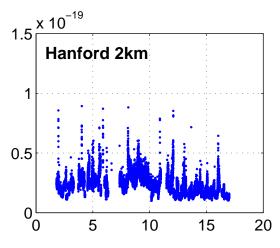


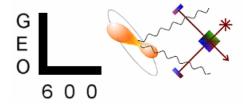
The raw data: $\sqrt{S_h}$ (Hz^{-1/2}) versus time in days



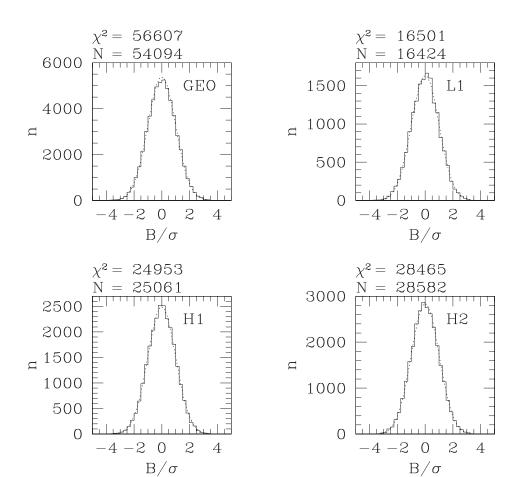


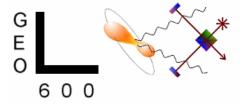




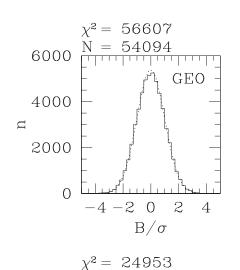


Gaussianity of resampled data B_k :

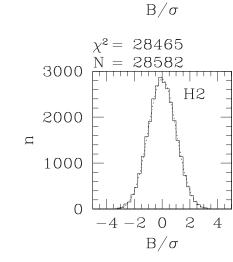


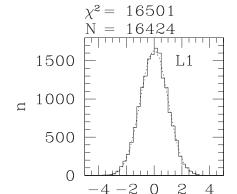


Gaussianity of resampled data B_k :



= 25061





 GEO is not in fact consistent with Gaussian distribution.

-4 - 2

0

 B/σ

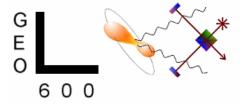
2

2500

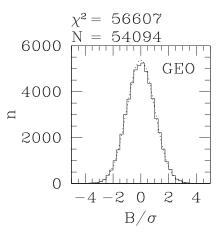
2000

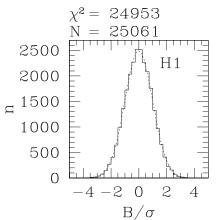
500

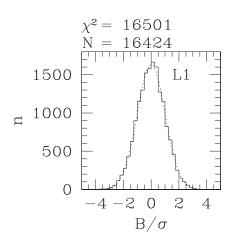
□ 1500 1000

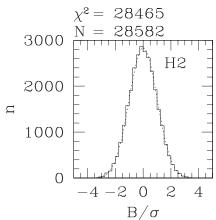


Gaussianity of resampled data B_k :

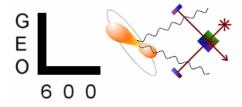




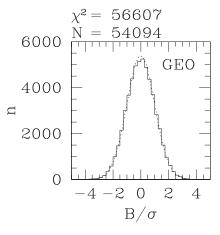


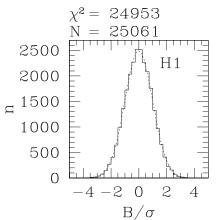


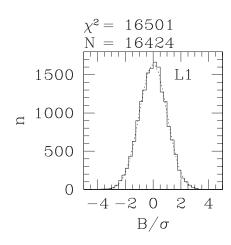
- GEO is not in fact consistent with Gaussian distribution.
 - Spectral disturbance near this frequency

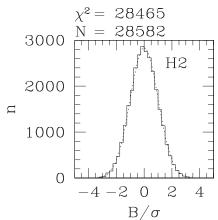


Gaussianity of resampled data B_k :

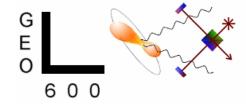




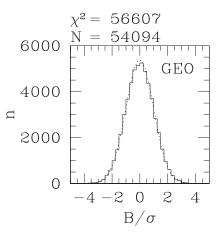


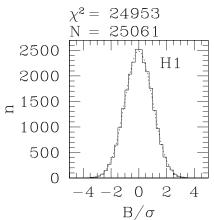


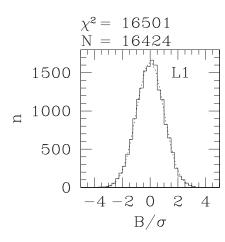
- GEO is not in fact consistent with Gaussian distribution.
 - Spectral disturbance near this frequency
 - ★ Might raise our upper limit by about ×1.5

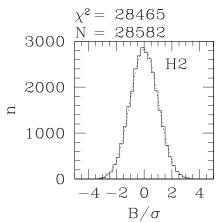


Gaussianity of resampled data B_k :

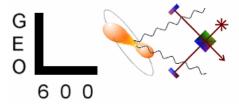




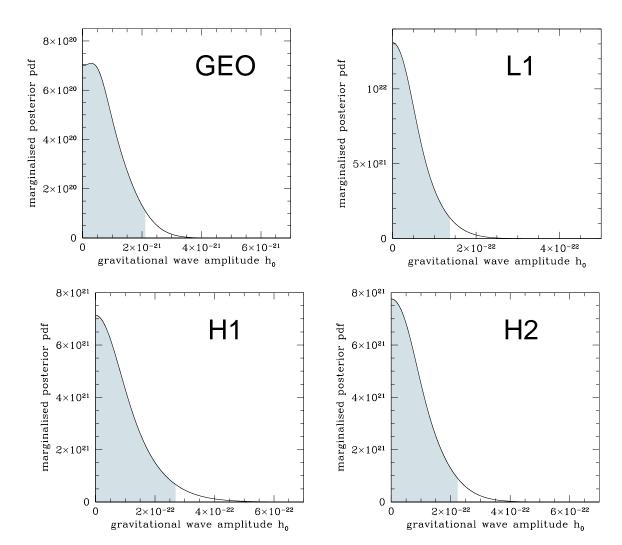


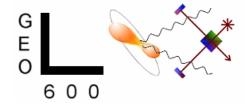


- GEO is not in fact consistent with Gaussian distribution.
 - Spectral disturbance near this frequency
 - ★ Might raise our upper limit by about ×1.5
- LIGO detectors are consistent with Gaussian distribution.

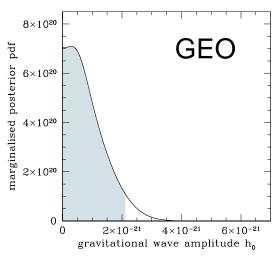


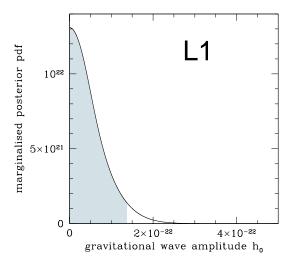
Posterior probability distributions:

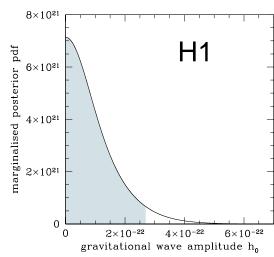


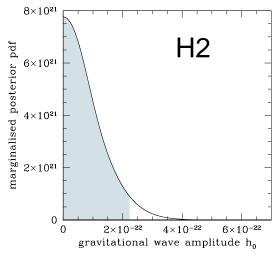


Posterior probability distributions:



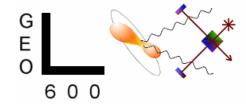




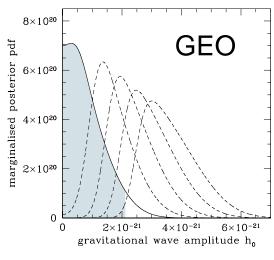


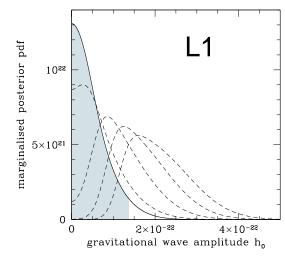
95% upper limits:

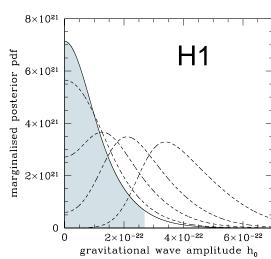
GEO	2.1×10^{-21}
L1	1.4×10^{-22}
H1	2.7×10^{-22}
H2	2.2×10^{-22}

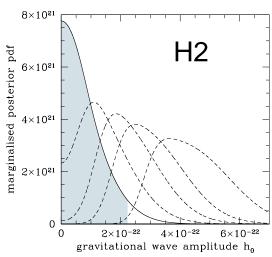


Posterior probability distributions:





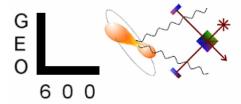




95% upper limits:

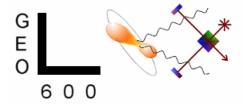
GEO	2.1×10^{-21}
L1	1.4×10^{-22}
H1	2.7×10^{-22}
H2	2.2×10^{-22}

 Can inject simulated signal to see how PDF changes.



• Can also compute joint probability distribution:

$$p(\vec{a}|\text{all data}) = p(\vec{a}|\text{GEO}) \cdot p(\vec{a}|\text{L1}) \cdot p(\vec{a}|\text{H1}) \cdot p(\vec{a}|\text{H2})$$



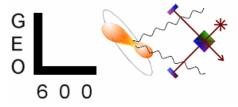
Can also compute joint probability distribution:

$$p(\vec{a}|\text{all data}) = p(\vec{a}|\text{GEO}) \cdot p(\vec{a}|\text{L1}) \cdot p(\vec{a}|\text{H1}) \cdot p(\vec{a}|\text{H2})$$

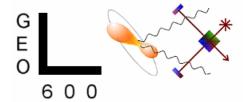
Marginalizing gives:

$$h_{95} = 1.0 \times 10^{-22}$$

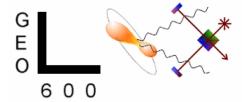
Outline



- I. Gravitational waves from pulsars
- II. LIGO and GEO during S1
- III. Frequency-domain analysis method
- IV. Time-domain analysis method
- V. Comparison of results
- VI. Future searches

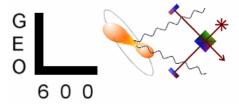


	Frequentist UL h_{95}^*	Bayesian UL h_{95}
GEO	1.9×10^{-21}	2.1×10^{-21}
H1	6.4×10^{-22}	2.7×10^{-22}
H2	4.7×10^{-22}	2.2×10^{-22}
L1	2.8×10^{-22}	1.4×10^{-22}
Joint	_	1.0×10^{-22}

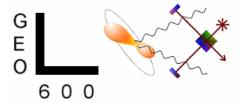


	Frequentist UL h_{95}^*	Bayesian UL h_{95}
GEO	1.9×10^{-21}	2.1×10^{-21}
H1	6.4×10^{-22}	2.7×10^{-22}
H2	4.7×10^{-22}	2.2×10^{-22}
L1	2.8×10^{-22}	1.4×10^{-22}
Joint	_	1.0×10^{-22}

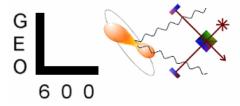
- PSR J1939+2134 is at 3.6 kpc
 - \Rightarrow ellipticity $\epsilon \le 7.5 \times 10^{-5}$



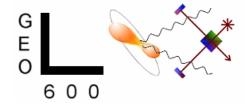
• Bayesian and frequentist analyses answer two different questions:



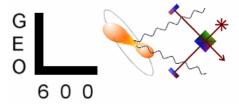
- Bayesian and frequentist analyses answer two different questions:
 - * Bayesian: Given our model and priors, for what value h_{95} are we 95% sure that the true h_0 lies below this level?



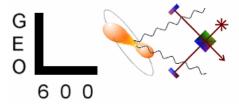
- Bayesian and frequentist analyses answer two different questions:
 - \star Bayesian: Given our model and priors, for what value h_{95} are we 95% sure that the true h_0 lies below this level?
 - \Rightarrow Threshold on $p(h_0|\text{data, priors})$



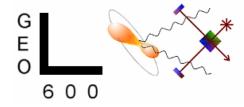
- Bayesian and frequentist analyses answer two different questions:
 - * Bayesian: Given our model and priors, for what value h_{95} are we 95% sure that the true h_0 lies below this level?
 - \Rightarrow Threshold on $p(h_0|\text{data, priors})$
 - * Frequentist: Given the measured value of \mathcal{F}^* , for what value h_{95}^* would a signal with $h_0 > h_{95}^*$ yield $\mathcal{F} > \mathcal{F}^*$ 95% of the time?



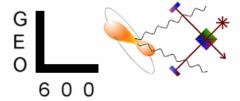
- Bayesian and frequentist analyses answer two different questions:
 - * Bayesian: Given our model and priors, for what value h_{95} are we 95% sure that the true h_0 lies below this level?
 - \Rightarrow Threshold on $p(h_0|\text{data, priors})$
 - * Frequentist: Given the measured value of \mathcal{F}^* , for what value h_{95}^* would a signal with $h_0 > h_{95}^*$ yield $\mathcal{F} > \mathcal{F}^*$ 95% of the time?
 - \Rightarrow Threshold on $p(\text{data}|h_0, \text{orientation})$

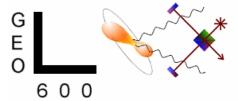


- Bayesian and frequentist analyses answer two different questions:
 - * Bayesian: Given our model and priors, for what value h_{95} are we 95% sure that the true h_0 lies below this level?
 - \Rightarrow Threshold on $p(h_0|\text{data, priors})$
 - * Frequentist: Given the measured value of \mathcal{F}^* , for what value h_{95}^* would a signal with $h_0 > h_{95}^*$ yield $\mathcal{F} > \mathcal{F}^*$ 95% of the time?
 - \Rightarrow Threshold on $p(\text{data}|h_0, \text{orientation})$
- It is therefore not surprising that the values h_{95} and h_{95}^* do not in general agree.

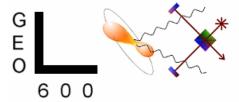


- Bayesian and frequentist analyses answer two different questions:
 - * Bayesian: Given our model and priors, for what value h_{95} are we 95% sure that the true h_0 lies below this level?
 - \Rightarrow Threshold on $p(h_0|\text{data, priors})$
 - * Frequentist: Given the measured value of \mathcal{F}^* , for what value h_{95}^* would a signal with $h_0 > h_{95}^*$ yield $\mathcal{F} > \mathcal{F}^*$ 95% of the time?
 - \Rightarrow Threshold on $p(\text{data}|h_0, \text{orientation})$
- It is therefore not surprising that the values h_{95} and h_{95}^* do not in general agree.
- Discrepancy largely due to worst-case (conservative) orientation chosen for frequentist approach.

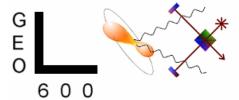




- Best UL on continuous signals is from a bar detector: 2.9×10^{-24} around 921.3 Hz from Galactic centre
 - ⋆ but no known pulsar at that frequency/location.

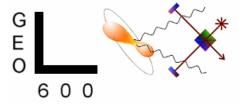


- Best UL on continuous signals is from a bar detector: 2.9×10^{-24} around 921.3 Hz from Galactic centre
 - ⋆ but no known pulsar at that frequency/location.
- Best previous UL on PSR J1939+2134 is 1×10^{-20} (using a divided bar).

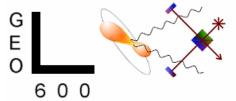


- Best UL on continuous signals is from a bar detector: 2.9×10^{-24} around 921.3 Hz from Galactic centre
 - ⋆ but no known pulsar at that frequency/location.
- Best previous UL on PSR J1939+2134 is 1×10^{-20} (using a divided bar).
- Indirect observational UL is 2×10^{-27} based on spindown rate.

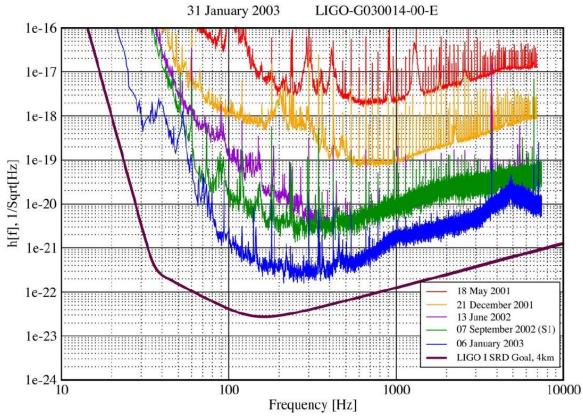
Outline

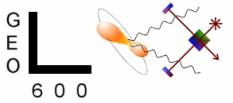


- I. Gravitational waves from pulsars
- II. LIGO and GEO during S1
- III. Frequency-domain analysis method
- IV. Time-domain analysis method
- V. Comparison of results
- VI. Future searches

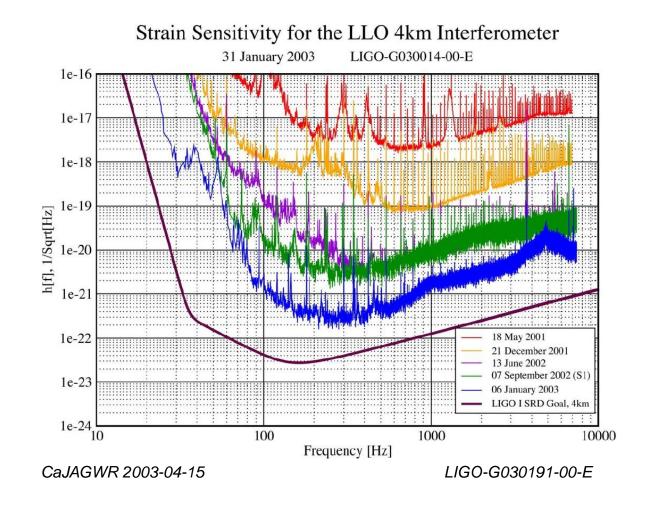


Second science run (S2) has just completed.

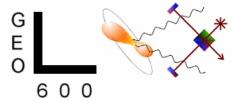




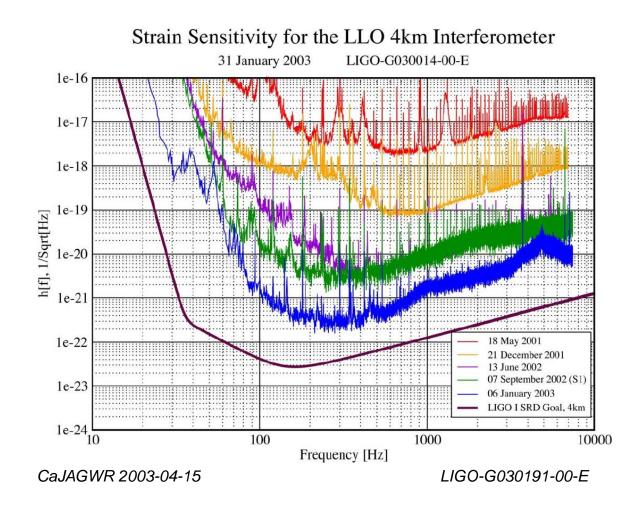
Second science run (S2) has just completed.



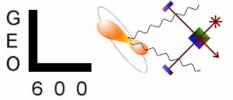
 Order of magnitude improvement in sensitivity!



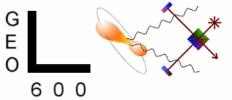
Second science run (S2) has just completed.



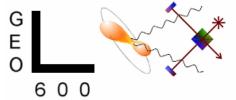
- Order of magnitude improvement in sensitivity!
- We want to start in on new data as soon as possible.



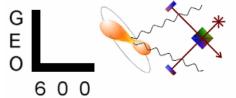
• Targeted searches on all known pulsars.



- Targeted searches on all known pulsars.
- Directed searches on known systems with unknown phase evolution (e.g. xray binaries).



- Targeted searches on all known pulsars.
- Directed searches on known systems with unknown phase evolution (e.g. xray binaries).
- Broad-band wide-area searches.
 - ⇒ Set upper limits on *unknown* sources.



- Targeted searches on all known pulsars.
- Directed searches on known systems with unknown phase evolution (e.g. xray binaries).
- Broad-band wide-area searches.
 - ⇒ Set upper limits on unknown sources.
- As instruments continue to improve, we may make actual detections of gravitational emissions!