Sources in the Medium Frequency Band

M. Benacquista Montana State University-Billings

D.Sedrakian, M. Hairapetyan, K. Shahabasyan, A. Sadoyan Yerevan State University

NASA Cooperative Agreement NCC5-579 CRDF/NFSAT Awards #AP2-3207, #12006/PH067-02

February 4, 2003

Gravitational Wave Advanced Detectors Workshop

Motivation and Outline

- Motivation
 - Look for possible continuous sources in the band
 - Quasi-radial oscillations of rotating white dwarfs
- Outline
 - Identify frequency range
 - Determine gravitational radiation
 - Estimate stochastic background level

Identifying the Frequency Range

White Dwarf Properties and Resonant Frequencies

$\rho_{\rm c} \left({\rm g/cm^3} \right)$	$M_0 (M_{\odot})$	$M (M_{\odot})$	$\Omega_{ m max}$	$Q^0_{\rm max}$ (kg m ²)	ω
1.716×10^{6}	0.498	0.572	0.196	3.872×10^{42}	0.757
1.544×10^{7}	0.867	0.976	0.476	2.315×10^{42}	0.766
5.377×10^{7}	1.049	1.164	0.768	1.338×10^{42}	1.077
1.287×10^{8}	1.145	1.254	1.063	8.095×10^{41}	1.399
7.036×10^{8}	1.245	1.34	2.042	2.687×10^{41}	2.001
2.091×10^{9}	1.257	1.339	3.105	1.217×10^{41}	1.299

Determining Strain Amplitude

QuickTime[™] and a Animation decompressor are needed to see this picture.

- Assume oblate shape due to rotation
- Oscillation is self-similar and is described by:

$$x_{\alpha} = x_{\alpha}^{0} \left(1 + \eta \sin(\omega t) \right)$$

• Quadrupole moment given by $Q_{ij} = \int \rho(x_i x_j - \frac{1}{3} x^2 \delta_{ij}) dV = Q_{ij}^0 (1 + \eta \sin(\omega t))$

Choose z-axis along rotation axis: $Q_{zz}^0 = -2Q_{xx}^0 = -2Q_{yy}^0 = -2Q_{yy}^0$

February 4, 2003

Gravitational Wave Advanced Detectors Workshop

Polarizations

In TT gauge with *z*-axis along the wave vector:

$$h_{+} = h_{xx} - h_{yy} = \frac{4GQ^{0}\eta\omega^{2}}{c^{4}r}\sin^{2}\theta\sin(\omega t)$$
$$h_{\times} = 2h_{xy} = 0$$

where θ is the angle between the wave vector and the white dwarf axis of rotation

Estimating the Background Level

- Numerical calculations give Q^0_{max} for select white dwarfs rotating at Ω_{max}
- Results are from an expansion in a dimensionless parameter proportional to Ω^2
- Use $Q^0 = (\Omega / \Omega_{\text{max}})^2 Q^0_{\text{max}}$
- Integrate over $\theta \Rightarrow \sin^2 \theta \to \frac{1}{2}$ $h_+ = 5.35 \times 10^{-65} \left(\frac{1 \text{ pc}}{r}\right) \left(\frac{\Omega}{\Omega_{\text{max}}}\right)^2 Q_{\text{max}}^0 \omega^2 \eta$

Gravitational Wave Advanced Detectors Workshop

White Dwarf Properties and Resonant Frequencies

$ ho_{c}$ (g/cm ³)	$M_0 (M_{\odot})$	$M (M_{\odot})$	Ω_{\max}	$Q^0_{\rm max}$ (kg m ²)	ω
1.716×10^{6}	0.498	0.572	0.196	3.872×10^{42}	0.757
1.544×10^{7}	0.867	0.976	0.476	2.315×10^{42}	0.766
5.377×10^{7}	1.049	1.164	0.768	1.338×10^{42}	1.077
1.287×10^{8}	1.145	1.254	1.063	8.095×10^{41}	1.399
7.036×10^{8}	1.245	1.34	2.042	2.687×10^{41}	2.001
2.091×10^{9}	1.257	1.339	3.105	1.217×10^{41}	1.299

Expected Strain Amplitudes

• Maximum values (assume $\Omega = \Omega_{max}$)

• Assume
$$r = 1$$
 pc, $\eta = 10^{-4}$

Observed Rotation Rates

Kawaler (astro-ph/0301539)

- Spectroscopic methods:
 - $M \sim 0.6 M_{\odot}$
 - $\Omega \sim 0.0036 \text{ Hz}$
 - $h \sim 4.1 \times 10^{-26}$
- Asteroseismic methods:
 - $M \sim 0.6 \ M_{\odot}$
 - $\Omega \sim 5.6 \times 10^{-5} \text{ Hz}$
 - $h \sim 9.7 \times 10^{-30}$

Conclusions

- Vibrating white dwarfs are potential sources of gravitational radiation in the mid-frequency range.
- Assuming a mean distance of *r* pc to nearest vibrating white dwarf, an upper limit of $\sim 10^{-23}/r$ can be placed on the expected level.
- If the high rotational rates of Kawaler are used, a more reasonable upper limit would be $\sim 10^{-26}/r$.
- If the low rotational rates are used, the upper limit is an almost negligible $\sim 10^{-30}/r$.
- Source of energy needs to be determined.
- Standard inflation gives $h \sim 10^{-27} 10^{-29}$ in this frequency range.

February 4, 2003