Sources in the Medium Frequency Band

M. Benacquista

Montana State University-Billings
D.Sedrakian, M. Hairapetyan, K. Shahabasyan, A. Sadoyan Yerevan State University

NASA Cooperative Agreement NCC5-579
CRDF/NFSAT Awards \#AP2-3207, \#12006/PH067-02

Motivation and Outline

- Motivation
- Look for possible continuous sources in the band
- Quasi-radial oscillations of rotating white dwarfs
- Outline
- Identify frequency range
- Determine gravitational radiation
- Estimate stochastic background level

Identifying the Frequency Range

White Dwarf Properties and Resonant Frequencies

$\rho_{\mathrm{c}}\left(\mathrm{g} / \mathrm{cm}^{3}\right)$	$\mathrm{M}_{0}\left(\mathrm{M}_{\odot}\right)$	$\mathrm{M}\left(\mathrm{M}_{\odot}\right)$	$\Omega_{\max }$	$Q^{0}{ }_{\max }\left(\mathrm{kg} \mathrm{m}^{2}\right)$	ω
1.716×10^{6}	0.498	0.572	0.196	3.872×10^{42}	0.757
1.544×10^{7}	0.867	0.976	0.476	2.315×10^{42}	0.766
5.377×10^{7}	1.049	1.164	0.768	1.338×10^{42}	1.077
1.287×10^{8}	1.145	1.254	1.063	8.095×10^{41}	1.399
7.036×10^{8}	1.245	1.34	2.042	2.687×10^{41}	2.001
2.091×10^{9}	1.257	1.339	3.105	1.217×10^{41}	1.299

Determining Strain Amplitude

- Assume oblate shape due to rotation
- Oscillation is self-similar and is described by:

$$
x_{\alpha}=x_{\alpha}^{0}(1+\eta \sin (\omega t))
$$

- Quadrupole moment given by

$$
Q_{i j}=\int \rho\left(x_{i} x_{j}-\frac{1}{3} x^{2} \delta_{i j}\right) d V=Q_{i j}^{0}(1+\eta \sin (\omega t))
$$

Choose z-axis along rotation axis: $Q_{z z}^{0}=-2 Q_{x x}^{0}=-2 Q^{0}{ }_{y y}=-2 Q^{0}$

Polarizations

In TT gauge with z-axis along the wave vector:

$$
\begin{aligned}
& h_{+}=h_{x x}-h_{y y}=\frac{4 G Q^{0} \eta \omega^{2}}{c^{4} r} \sin ^{2} \theta \sin (\omega t) \\
& h_{\times}=2 h_{x y}=0
\end{aligned}
$$

where θ is the angle between the wave vector and the white dwarf axis of rotation

Estimating the Background Level

- Numerical calculations give $Q^{0}{ }_{\text {max }}$ for select white dwarfs rotating at $\Omega_{\max }$
- Results are from an expansion in a dimensionless parameter proportional to Ω^{2}
- Use $Q^{0}=\left(\Omega / \Omega_{\text {max }}\right)^{2} Q^{0}{ }_{\text {max }}$
- Integrate over $\theta \Rightarrow \sin ^{2} \theta \rightarrow 1 / 2$

$$
h_{+}=5.35 \times 10^{-65}\left(\frac{1 \mathrm{pc}}{r}\right)\left(\frac{\Omega}{\Omega_{\max }}\right)^{2} Q_{\max }^{0} \omega^{2} \eta
$$

White Dwarf Properties and Resonant Frequencies

$\rho_{\mathrm{c}}\left(\mathrm{g} / \mathrm{cm}^{3}\right)$	$\mathrm{M}_{0}\left(\mathrm{M}_{\odot}\right)$	$\mathrm{M}\left(\mathrm{M}_{\odot}\right)$	$\Omega_{\max }$	$Q_{\max }^{0}\left(\mathrm{~kg} \mathrm{~m}^{2}\right)$	ω
1.716×10^{6}	0.498	0.572	0.196	3.872×10^{42}	0.757
1.544×10^{7}	0.867	0.976	0.476	2.315×10^{42}	0.766
5.377×10^{7}	1.049	1.164	0.768	1.338×10^{42}	1.077
1.287×10^{8}	1.145	1.254	1.063	8.095×10^{41}	1.399
7.036×10^{8}	1.245	1.34	2.042	2.687×10^{41}	2.001
2.091×10^{9}	1.257	1.339	3.105	1.217×10^{41}	1.299

Expected Strain Amplitudes

- Maximum values (assume $\Omega=\Omega_{\max }$)
- Assume $r=1 \mathrm{pc}, \eta=10^{-4}$

Observed Rotation Rates

Kawaler (astro-ph/0301539)

- Spectroscopic methods:
- M ~ $0.6 \mathrm{M}_{\odot}$
- $\Omega \sim 0.0036 \mathrm{~Hz}$
- $\mathrm{h} \sim 4.1 \times 10^{-26}$
- Asteroseismic methods:
- $\mathrm{M} \sim 0.6 \mathrm{M}_{\odot}$
- $\Omega \sim 5.6 \times 10^{-5} \mathrm{~Hz}$
- $\mathrm{h} \sim 9.7 \times 10^{-30}$

Conclusions

- Vibrating white dwarfs are potential sources of gravitational radiation in the mid-frequency range.
- Assuming a mean distance of $r \mathrm{pc}$ to nearest vibrating white dwarf, an upper limit of $\sim 10^{-23} / r$ can be placed on the expected level.
- If the high rotational rates of Kawaler are used, a more reasonable upper limit would be $\sim 10^{-26} / r$.
- If the low rotational rates are used, the upper limit is an almost negligible $\sim 10^{-30} / r$.
- Source of energy needs to be determined.
- Standard inflation gives $h \sim 10^{-27}-10^{-29}$ in this frequency range.

