Hydraulic Actuators for Advanced LIGO and LIGO I

Stanford, Caltech, LSU, MIT, LLO

Rich Abbott, Graham Allen, Daniel DeBra, Dennis Coyne, Jeremy Faludi, Amit Ganguli, Joe Giaime, Marcel Hammond, Corwin Hardham, Wensheng Hua, Jonathan Kern, Brian Lantz, Ken Mailand, Ken Mason, Rich Mittleman, Jamie Nichol, Joshua Phinney, David Shoemaker, Michael Smith

LIGO-G030206-00-Z

Advanced LIGO Suspensions

Motivation for Pre-Isolator

Motivation for Pre-Isolator

- Reduce control effort / noise from inner stages

Performance Requirements

- Range of Motion
 - Mechanical Adjustment: 5 mm.
 - Active Control: +/- 1 mm.
- Response
 - Initial Response: 1 mm. in 10 sec.
 - Bandwidth: .1 10 Hz.
- Resolution and Noise
 - 10 nm. rms (10-2 to 3 Hz)

Quiet Hydraulic Actuator

Quiet Hydraulic Actuator Basics

- (1) Pump supplies a constant flow of fluid to the actuator.
- (2) Fluid flows continuously through a hydraulic Wheatstone bridge.
- (3) By controlling the resistance, one generates differential pressure across the bridge, which are connected to
- (4) Differential bellows which act as a stictionfree piston.
- (5) The actuator plate is between the bellows, and is connected to the payload with a flexure stiff in 1 DOF

•Laminar flow

- high viscosity (100 x water),
- low velocity (80 microns/ sec.),

fluid path geometry.

- •Motion with flexures
- •Offload springs to keep bridge balanced common mode rejection of pump noise

How to get Isolation from the Ground

How to get Isolation from the Ground

How to get Isolation from the Ground

Development at Stanford

Bellows (within shield)

Actuator plate

Valve (not visible)

Sensor platform

Tripod flexure

Vertical Actuator –version 2

Vertical Actuator (version 1)

Witness Seismometer (Geotech S-13)

Seismometer (STS-2)

Offload Springs

800 lb Test Mass

Actuator Development

Test Platform Performance

GO TO LASTI

- Translation X
- Translation Y
- Translation Z
- Pitch
- Roll
- Yaw
- O.C. Vert
- O.C. Horz

- Translation X
- Translation Y
- Translation Z
- Pitch
- Roll
- Yaw
- O.C. Vert
- O.C. Horz

- Translation X
- Translation Y
- Translation Z
- Pitch
- Roll
- Yaw
- O.C. Vert
- O.C. Horz

- Translation X
- Translation Y
- Translation Z
- Pitch
- Roll
- Yaw
- O.C. Vert
- O.C. Horz

- Translation X
- Translation Y
- Translation Z
- Pitch
- Roll
- Yaw
- O.C. Vert
- O.C. Horz

- Translation X
- Translation Y
- Translation Z
- Pitch
- Roll
- Yaw
- O.C. Vert
- O.C. Horz

- Translation X
- Translation Y
- Translation Z
- Pitch
- Roll
- Yaw
- O.C. Vert
- O.C. Horz

- Translation X
- Translation Y
- Translation Z
- Pitch
- Roll
- Yaw
- O.C. Vert
- O.C. Horz

Summary

- Hydraulics Installed at LASTI
- 6 DOF Controlled
- Demonstrated Performance

Future Work at LASTI

- Incorporate feedback seismometers
- Possible plant modifications
- More complicated control

Design Trades

Quiet Hydraulics

- Translation X
- Translation Y
- Translation Z
- Pitch
- Roll
- Yaw
- O.C. Vert
- O.C. Horz

