

The ST7 Interferometric Displacement Sensor - a progress report -

Andreas Kuhnert Jet Propulsion Laboratory California Institute of Technology Pasadena, CA, USA

Aspen 2003, Gravitational Wave Advanced Detector Workshop, February 2-8, 2003 LIGO-G030211-00-Z

ST7 Interferometer people

NMP

- Bill Folkner, ST7 PI
- Guy Man, ST7 PM
- Allan Sirota, Interferometer PEM
- Robert Spero
- Jake Chapsky
- Rosemary Diaz
- Steve Azevedo
- A.K., Interferometer CogE

This Research was carried out at the Jet Propulsion Laboratory, California Institute of Technology, under contract with the National Aeronautics and Space Administration.

• Technology validation of sensor and thrust-producing technologies to control a space vehicles flight path so the payload responds only to gravitational forces.

Sensor: Stanford University, Stanford, CA Thruster: Busek Company Inc. Natick, Mass.

- Launch 2006 as NASA's Space Technology 7 project (ST7)
 - Piggy-backing on ESA's SMART-2 Mission

ST7 Technology Objectives

- Validate that a test mass follows a trajectory determined by gravitational forces only within $3 \times 10^{-14} \text{ m/s}^2 / \sqrt{\text{Hz}}$
 - Low acceleration noise is needed for study of general relativity, planetary gravity, gravitational waves

NMP

- Validate spacecraft position control to an accuracy of $<10 \text{ nm}/\sqrt{\text{Hz}}$
 - Spacecraft position control is required for separated-spacecraft interferometers which do not use internal delay lines

- The DRS instrument package consists of
 - Two gravitational reference sensors
 - Microthrusters for spacecraft position control
 - Interferometer to measure the distance between the two test masses.

Required DRS Performance

- LISA requirement @ 1 mHz:
- ST7 goal @ 1 mHz:
- Proof mass sensor noise:
- Interferometer noise requirement : (1/3 of error budget)
- LISA requirement @ 10 mHz:
- ST7 goal @ 10 mHz:
- Interferometer noise requirement: (1/3 of error budget)
- $a = (2\pi f)^{2*5*10^{-10}} \text{ m/}\sqrt{\text{Hz}} \sim 2 * 10^{-14} \text{ m/s}^2/\sqrt{\text{Hz}} @ 1 \text{ mHz}$
- $a = (2\pi f)^{2*1*10^{-9}} m/\sqrt{Hz} \sim 4 * 10^{-14} m/s^2/\sqrt{Hz} @ 1 mHz$
 - 4 * 10⁻¹² m/s²/√Hz @ 10 mHz)
- $a = (2\pi f)^{2*5*10^{-11}} m/\sqrt{Hz} \sim 2 * 10^{-13} m/s^2/\sqrt{Hz} (a_7 \cdot 10 mHz)$

3*10⁻¹⁵ m/s²/√Hz 3*10⁻¹⁴ m/s²/√Hz 1 nm/√Hz 280 pm/√Hz @ 1 mHz

NMP

1.5*10⁻¹⁴ m/s²/√Hz 1.5*10⁻¹³ m/s²/√Hz 30 pm/√Hz @ 10 mHz

Laser Frequency Noise

- Flight laser noise measured:
- Interferometer pathlength mismatch:
- Laser noise -> path noise:
 - @ 10 mHz
 - @ 1 mHz

Compare to:

- Interferometer noise req'd:
- Interferometer noise req'd:

~1.5 MHz/ $\sqrt{\text{Hz}}$ @ 10 mHz ~7 MHz/ $\sqrt{\text{Hz}}$ @ 1 mHz $\Delta L \sim 0.5 \text{ mm}$ $\widetilde{x}(f) = \Delta L^* \widetilde{v}(f) / v_0$ ~ 3 pm/ $\sqrt{\text{Hz}}$ ~ 12 pm/ $\sqrt{\text{Hz}}$

30 pm/√Hz @ 10 mHz 280 pm/√Hz @ 1 mHz

Laser frequency noise

Laser intensity noise

Interferometer Results

NMP