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LIGO commissioning & S1:
History
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LIGO commissioning & S1:
duty factors

• S1: 408 h (17 d)

• Single interferometers lock statistics:

• Double coincidences:

• Triple coincidence: 96 h (23%)

LHO 2k 298 h (73%)
LHO 4k 235 h (58%)
LLO 4k 170 h (42%)

LHO 2k - LHO 4k 188 h (46%)
LHO 2k - LLO 4k 131 h (32%)
LHO 4k - LLO 4k 116 h (28%)



LIGO commissioning & S1:
noise spectra

10 100 1000 10000
Frequency [Hz]

1e-24

1e-23

1e-22

1e-21

1e-20

1e-19

1e-18

1e-17

1e-16

h[
f]

, 1
/S

qr
t[

H
z]

LLO 4km
LHO 4km
LHO 2km
LIGO I SRD Goal, 2km
LIGO I SRD Goal, 4km

Strain Sensitivities for the LIGO Interferometers for S1
23 August 2002 - 09 September 2002       LIGO-G020461-00-E



LIGO commissioning & S1:
stationarity

H2:

1σ 3σ

• Noise power fluctuates
widely

• Measure power in
bands, apply ‘epoch
veto’

• No GW could have
produced such
variations



LIGO commissioning & S1:
calibration

• Inject calibration lines, and parametrize

as

GW error signal[ ] f( ) calibration signal[ ] f( ) sensing function[ ] f( )
1 open-loop-gain[ ] f( )+
--------------------------------------------------------------×=

AS_Q f( ) X f( ) αC f( )
1 αβH f( )+
------------------------------×=



LIGO commissioning & S1:
data selection

• Three detectors locked (96 h, 23%)

• Playground + lock stretch boundaries (81 h, 20%)

• Epoch veto (55 h, 13%)

• Calibration (35.5 h, 8.7%)
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Burst search:
motivations

• We don’t understand our detectors well enough yet to go after a
detection: upper limits are more natural

• Four upper limit groups:
››stochastic background

››continuous waves

››binary inspirals

››bursts

• Some resources are shared between the UL groups: calibration,
vetoes, LDAS, etc.

• Formal publications are on their way



Burst search:
definition

• Our definition of a burst: short (< seconds) period of time where the
data in our detectors is consistent with noise and a coherent
gravitational wave signal

• We try to be sensitive to the broadest class of signals possible: no
matched filtering

• As a natural consequence of our definition of a burst:
››we must characterize the noise

››we must calibrate our detectors

››we should use as many detectors as possible in coincidence

• We try to answer: “What is the largest rate and amplitude of a certain
type of bursts that are consistent with our data?”

››all the science is hidden in the definition of what we mean by “certain type”; e.g.
interpreted vs. uninterpreted rates

››the way we build the analysis pipeline implicitly affects the types of bursts we can detect



Burst search:
methodology

• Want to construct an analysis system that measures:
››the number NGW of GW candidates

››the expected number NB of false detections

››the fraction ε of bursts from a certain population that can be detected

• NGW and NB, together with the assumption that we have Poisson
statistics, give a limit λ on the rate of GW bursts detectable by our
analysis system

• λ/ε gives a limit on the rate of GW bursts from the population used to
measure ε
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Analysis system:
analysis pipeline
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Analysis system:
event trigger generators

• ETG: transform a time series into a list of events
››TFCLUSTERS: time-frequency + clustering

››SLOPE: time domain filter



Analysis system:
TFCLUSTERS
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• Compute spectrogram (125 ms time resolution); threshold on power,
get uniform black pixel probability (fit to Rice distribution)

• Look at clusters in black and white image; threshold on size or on size
and distance for pairs of clusters

• Get start time, duration, bandwidth, cluster size, cluster shape, power
distribution



Analysis system:
slope
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this figure is a placeholder for a prettier one. Interesting, though.

• Convolve data with a ramp
symmetric about zero, of
duration 0.61 ms (10 points at
16384 Hz)

• Look for threshold crossings

• Cluster crossings on 2.9 ms
timescale

• Arnaud et al., Phys. Rev. D 59,
082002 (1999)
Pradier et al., Phys. Rev. D 63,
042002 (2001)



Analysissystem:
data conditioning

• Slope and (to a lesser extent) TFCLUSTERS are sensitive to the
correlations in the input noise

• High-pass filter (150 Hz corner frequency)

• Rough whitening

• Significant ringing is problematic for time coincidences
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Analysis system:
vetoes

• Run simple glitch finder on auxiliary channel

• Look for significant correlation with GW channel using a time-lag
analysis

• Environmental channels are not necessary as vetoes

• A few instrumental channels are good vetoes
››I phase of error signal for the differential mode

››Michelson interferometer control signal

››error signal for the common mode (laser frequency noise)

• With the diagnostics performed during S1, we couldn’t demonstrate
that the instrumental channels would never see a strong GW

• No vetoes were used in our analysis



Analysis system:
coincidences

• Most powerful way to reduce false rates is to use triple coincidences

• Slope: 50 ms time window (10 ms light travel time + 40 ms ringing)

• TFCLUSTERS: 500 ms time window (4 times 125 ms resolution) and
80 Hz frequency window

• Clustering of triplets within 0.5 s of each other

• Coincidence analysis retains all GW signals detected by the ETGs



Analysis system:
tuning

• Defined a playground dataset for optimizing the pipeline (9.3 h of triple
coincidence)

• Playground is uniformly distributed in time, not in other aspects of the
data (non-stationarities)

• Tuned ETG thresholds to have ~1 false coincidence in all S1



Analysis system:
background

• Assuming a small GW rate, we create ‘fake’ datasets by time shifting
the event lists from each interferometer with respect to each other

• The two detectors at Hanford are somewhat correlated, so the shift is
only between the Hanford and the Livingston sites

• Averaged over lags from -100s to +100s



Analysis system:
efficiency

• The efficiency is measured by injecting a waveform in software, with
various values of its amplitude

• Each waveform is injected at the zenith of each detector, with optimal
orientation; get sky average in post-processing

››this computationally efficient method can only handle linearly polarized signals

• We used Gaussian pulses and Sine-Gaussian waveforms
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S1 results:
efficiency
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S1 results:
background

LHO-LLO lag (sec)
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S1 results:
upper limits

• Use Feldman-Cousins ordering principle to get Frequentist
confidence interval

››90% confidence level

››marginalize over Poisson error in background estimation (small effect)

• Inconsistency of Slope confidence interval with zero: a result of our
inability to model all the non-stationarities and to understand perfectly
our detectors. Hence, upper-limit.

TFCLUSTERS SLOPE

# coincidences 6 5

mean background 10.7 +/- 0.4 2.5 +/- 0.2

confidence interval
event number

[0, 2.1] [0.5, 8.0]

UL on rate 1.4 per day 5.4 per day



S1 results:
interpreted limits
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S1 results:
systematic errors

• 20% uncertainty on efficiency from calibration errors (included in
results)

• Unknown (small?) uncertainty in possible non-representativeness of
data used in simulations

• Small uncertainty in triple coincidence efficiency estimation (trivial to
get rid off with more CPU cycles)

• Small uncertainty in background estimation procedures
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S2 and beyond:
data
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• 8 weeks of data
(similar duty fac-
tors as S1)

• good sensitivity

• improved stability



S2 and beyond:
analysis

• We need better handling or significant reduction of non-stationarities
(glitches, longer trends, ...)

• We could do much better in detection efficiency
››fine tuning and extensions of existing ETGs

››new ETGs (wavelets, time domain, ...)

››more complete coincidences (amplitude, tighter timing, time-frequency shapes, ...)

››coherent post-coincidence analyses (cross correlations, coherent power filters, ...)

››use more detectors (GEO, TAMA, Virgo, bars)

• We should make scientific interpretation easier
››more realistic or interesting waveforms in simulations

››use pointing to target particular objects or regions

• S3 now planned for the Fall of 2003: goal of similar sensitivities for all
interferometers

• We plan to transition to a detection mode of operation by early 2004
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