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LIGO commissioning & S1:
LIGO History
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LIGO commissioning & S1:
LIGO duty factors

e 51: 408 h (17 d)
e Single interferometers lock statistics:

LHO 2k 298 h (73%)
LHO 4k 235 h (58%)
LLO 4k 170 h (42%)

e Double coincidences:

LHO 2k - LHO 4k [ 188 h (46%)
LHO 2k - LLO 4k 131 h (32%)
LHO 4k - LLO 4k |116 h (28%)

 Triple coincidence: 96 h (23%)




LIGO commissioning & S1:
LIGO noise spectra

Strain Sensitivities for the LIGO Interferometers for S1
23 August 2002 - 09 September 2002  LIGO-G020461-00-E
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LIGO commissioning & S1:
LIGO stationarity

* Noise power fluctuates H2:

. d I [ Noise P Histogram 320-400 Hz) Nent — 895 [ Noise Power Histogram 400-600 Hz | Nent - 895
WI e y 3 tean =0.0008318 lMean =0.006233
10 BMS = 0.001757 s RMS =0.003117
: 2 Under= 0
10 ¢ _

* Measure power in
bands, apply ‘epoch
veto’ o |

» No GW could have 1§

10 5:

produced such o oo o0z o8 o004 005 0 oot om o6 oon oo
. - Noise P Hi 600-1600 H; Moise P Hi 1600-3000 H
Va rl at I O n S | Uzlsj::ﬂ“’el' istogram z| [ Noise Power Histogram 2)

10 =

Ment = 895

lMean =0.02459

MS =0.01153
r=

10 =

1E: I =
I o |1 T . 11

- | R NS TR N i
0 002 004 006 008 01 0.12 g14
Irms

lo 30



LIGO commissioning & S1:
LIGO calibration

* Inject calibration lines, and parametrize

[sensing function](f)
1 + [open-loop-gain](f)

[GW error signal](f) = [calibration signal](f) x

as
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LIGO commissioning & S1:
LIGO data selection

e Three detectors locked (96 h, 23%)

* Playground + lock stretch boundaries (81 h, 20%)
e Epoch veto (55 h, 13%)

e Calibration (35.5 h, 8.7%)
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Burst search:
LIGO motivations

e We don’t understand our detectors well enough yet to go after a
detection: upper limits are more natural

* Four upper limit groups:
»>stochastic background
»>continuous waves
»>binary inspirals
»>bursts

e Some resources are shared between the UL groups: calibration,
vetoes, LDAS, etc.

e Formal publications are on their way



Burst search:
LIGO definition

e Qur definition of a burst: short (< seconds) period of time where the
data in our detectors is consistent with noise and a coherent
gravitational wave signal

e We try to be sensitive to the broadest class of signals possible: no
matched filtering

e As a natural consequence of our definition of a burst:
»>we must characterize the noise
»>we must calibrate our detectors

»>we should use as many detectors as possible in coincidence

e We try to answer: “What is the largest rate and amplitude of a certain
type of bursts that are consistent with our data?”

»>all the science is hidden in the definition of what we mean by “certain type”; e.g.
interpreted vs. uninterpreted rates

»>the way we build the analysis pipeline implicitly affects the types of bursts we can detect



Burst search:
LIGO methodology

e Want to construct an analysis system that measures:
»>the number Ngyy of GW candidates
»>the expected number Ng of false detections
»>the fraction € of bursts from a certain population that can be detected

* Ngw and Npg, together with the assumption that we have Poisson
statistics, give a limit A on the rate of GW bursts detectable by our
analysis system

e Me gives a limit on the rate of GW bursts from the population used to
measure ¢
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LIGO

Analysis system:

analysis pipeline
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Analysis system:
LIGO  oyent trigger generators

e ETG: transform a time series into a list of events
»TFCLUSTERS: time-frequency + clustering
»»SLOPE: time domain filter



Analysis system:
LIGO TFCLUSTERS
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e Compute spectrogram (125 ms time resolution); threshold on power,
get uniform black pixel probability (fit to Rice distribution)

* Look at clusters in black and white image; threshold on size or on size
and distance for pairs of clusters

e Get start time, duration, bandwidth, cluster size, cluster shape, power
distribution



Analysis system:
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Analysis system:
data conditioning

e Slope and (to a lesser extent) TFCLUSTERS are sensitive to the
correlations in the input noise

e High-pass filter (150 Hz corner frequency)
* Rough whitening

LIGO

amplitude




Analysis system:
LIGO vetoes

* Run simple glitch finder on auxiliary channel

e Look for significant correlation with GW channel using a time-lag
analysis

* Environmental channels are not necessary as vetoes
e A few instrumental channels are good vetoes
»>| phase of error signal for the differential mode

»>Michelson interferometer control signal

»>error signal for the common mode (laser frequency noise)

e With the diagnostics performed during S1, we couldn’t demonstrate
that the instrumental channels would never see a strong GW

* No vetoes were used in our analysis



Analysis system:
LIGO coincidences

* Most powerful way to reduce false rates is to use triple coincidences
e Slope: 50 ms time window (10 ms light travel time + 40 ms ringing)

e TFCLUSTERS: 500 ms time window (4 times 125 ms resolution) and
80 Hz frequency window

e Clustering of triplets within 0.5 s of each other
e Coincidence analysis retains all GW signals detected by the ETGs



Analysis system:
LIGO tuning

e Defined a playground dataset for optimizing the pipeline (9.3 h of triple
coincidence)

* Playground is uniformly distributed in time, not in other aspects of the
data (non-stationarities)

e Tuned ETG thresholds to have ~1 false coincidence in all S1



Analysis system:
LIGO background

 Assuming a small GW rate, we create ‘fake’ datasets by time shifting
the event lists from each interferometer with respect to each other

* The two detectors at Hanford are somewhat correlated, so the shift is
only between the Hanford and the Livingston sites

* Averaged over lags from -100s to +100s



Analysis system:
LIGO efficiency

e The efficiency is measured by injecting a waveform in software, with
various values of its amplitude

 Each waveform is injected at the zenith of each detector, with optimal
orientation; get sky average in post-processing

»>this computationally efficient method can only handle linearly polarized signals

We used Gaussian pulses and Sine-Gaussian waveforms
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efficiency

efficiency

LIGO

S1 results:
efficiency
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S1 results:
LIGO background

TFCLUSTERS

Time-shifted triple coincidence events



S1 results:
LIGO upper limits

e Use Feldman-Cousins ordering principle to get Frequentist
confidence interval

>>90% confidence level

»>marginalize over Poisson error in background estimation (small effect)

TFCLUSTERS SLOPE
# coincidences 6 )
mean background 10.7 +/- 0.4 2.5+/-0.2
confidence interval [0, 2.1] [0.5, 8.0]
event number
UL on rate 1.4 per day 5.4 per day

* Inconsistency of Slope confidence interval with zero: a result of our
inability to model all the non-stationarities and to understand perfectly
our detectors. Hence, upper-limit.



LIGO

S1 results:

Interpreted limits

90% confidence reglons for TFCLUSTERS
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S1 results:
LIGO systematic errors

e 20% uncertainty on efficiency from calibration errors (included in
results)

e Unknown (small?) uncertainty in possible non-representativeness of
data used in simulations

e Small uncertainty in triple coincidence efficiency estimation (trivial to
get rid off with more CPU cycles)

e Small uncertainty in background estimation procedures
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S2 and beyond:
LIGO data

Strain Sensitivity
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S2 and beyond:
LIGO analysis

* WWe need better handling or significant reduction of non-stationarities
(glitches, longer trends, ...)

e WWe could do much better in detection efficiency
»fine tuning and extensions of existing ETGs
»»new ETGs (wavelets, time domain, ...)
»>more complete coincidences (amplitude, tighter timing, time-frequency shapes, ...)
»>coherent post-coincidence analyses (cross correlations, coherent power filters, ...)
»>use more detectors (GEO, TAMA, Virgo, bars)
* \WWe should make scientific interpretation easier
»>more realistic or interesting waveforms in simulations
»>use pointing to target particular objects or regions

e S3 now planned for the Fall of 2003: goal of similar sensitivities for all
interferometers

e We plan to transition to a detection mode of operation by early 2004
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