

Advanced LIGO Systems Design & Interferometer Sensing & Optics

Peter Fritschel, LIGO MIT PAC 13 Meeting, 5 June 2003

Upgrade approach: arriving at the present design

- We don't know what the initial LIGO detectors will see
 - Design advanced interferometers for improved broadband performance
- Evaluate performance with specific source detection estimates
 - Optimizing for neutron-star binary inspirals also gives good broadband performance
- Push the design to the technical break-points
 - Improve sensitivity where feasible design not driven solely by known sources
- Design approach based on a complete interferometer upgrade
 - More modest improvements may be possible with upgrades of selected subsystem/s, but they would profit less from the large fixed costs of making any hardware improvement

Advantages of Signal Recycling

- Provides ability to do some shaping of the response, but principal advantage is in power handling:
 - Signal recycled: 200 Mpc NBI range, 2.1 kW beamsplitter power
 - Non-signal recycled, same P_{in}: 180 Mpc range, 36 kW BS power
- □ Reduces 'junk light' at anti-symmetric output (factor of ~10)

Low frequency mode

Seismic wall frequency

- vertical mode of the suspension's last stage is relatively high: ~10 Hz
- trade-off between horizontal thermal noise and vertical stiffness
- variable cross-section fiber may allow 'dual optimization'
- may be possible to remove vertical mode signal from data w/ signal processing
- gravity gradient noise may dominate below 15 Hz anyway

3rd interferometer: option for narrowband, tunable design

 □ Reasonable performance over 1-2 octaves with a fixed transmission SRM

NS inspiral range is typically ½ that of the baseline design

Bandwidth for a given tuning is approximately 100-200 Hz

LIGO-G030268-00-D

Test mass internal thermal noise

- □ Dominant noise source from ~60-200 Hz
- □ Beam size: make as big as possible
 - ➤ Bulk thermal noise scales as w^{-3/2} for sapphire, w^{-1/2} for silica
 - Coating thermal noise scales as w⁻¹
 - Beam gaussian radius is 6.0 cm (vs 4.0 in initial LIGO), limited by:
 - Aperture loss in arms
 - Ability to polish very long radii of curvature
 - Attaining polishing uniformity over a larger area
 - Stability of arm cavities against mirror distortions and misalignments

Bulk loss

- Sapphire is thermoelastic loss dominated (basic material params)
- Silica: annealing, glass type → Q= 200 million seen in samples
- Optical coating loss ...

LIGO

Impact of coating parameters on performance: sapphire & silica substrates

NS-NS binary inspiral range

6.0E-05

1.0E-04

8.0E-05

1.2E-0

Better coating materials needed to retain bulk loss performance!

Pre-stabilized laser reqs & design

Main requirement: high power

200 W laser a significant increase over present performance, but should be attainable

laser PSL MC 180 W \rightarrow 165 W \rightarrow 125 W

Design: diode-pumped Nd:YAG rod-based oscillator, injection locked with a low-noise master oscillator

Developed by LZH: 80W to date

Input Optics: reqs. & design

Requirements

- Provide phase modulation for interferometer sensing
 - similar to initial LIGO, but with higher power
- Beam stabilization: frequency, amplitude, and direction
 - Frequency & direction: similar to initial LIGO, but down to lower frequency
 - Amplitude stabilization: need significant improvement at low frequency due to technical radiation pressure imbalance: RIN = $2 \cdot 10^{-9} / \sqrt{\text{Hz}}$ @10Hz
- Provide power control & IFO mode matching over a wide range of power

Conceptual design

- Electro-optic modulators: new material, RTA, with better power handling
- Triangular mode cleaner: 7kg mirrors, triple pendulum suspensions
- High-power, in-vacuum photodetector for amplitude stabilization
- Compensation of thermal lensing for in-vacuum mode matching
 - Possibly passive or active

Core Optics: optical requirements

Polishing uniformity

- Allow 20 ppm effective loss per mirror
- Requires 0.75-1.2 nm-rms uniformity over central 120 mm diameter
 - Initial LIGO optics: 1-1.5 nm-rms over central 150 mm diam
- CSIRO has polished a 15 cm diam sapphire piece: 1.0 nm-rms uniformity over central 120 mm

Bulk Homogeneity

- Allow 10-20 nm-rms distortion
- Sapphire as delivered typically has 50 nm-rms distortion
- Compensation techniques
 - Compensating polish: Goodrich has demonstrated 10 nm-rms
 - Ion beam etching

LADI CERTIFICATION DATA

Coatings, optical properties

- Absorption: 0.5 ppm OK, lower would be better: 0.1 ppm goal
- > Thickness uniformity, 0.1%
- ITM transmission matching: 1%

Core optics development

Sapphire

- Crystal growth
 - Crystal Systems, Inc., development of 40kg pieces required
 - Have grown ~half dozen 15" diameter boules
 - Taken delivery of 2 for testing
- Absorption
 - CSI material typically displays 40-60 ppm/cm absorption
 - Annealing studies at Stanford: 20-30 ppm/cm, small pieces so far

□ Fused silica

- Less material development required
 - Up to 75 kg available, with low-absorption (0.5 ppm/cm) and good homogeneity
- Mechanical loss of fused silica under intense study

Interferometer Sensing & Control

- Acquire lock of the interferometer
 - Similar problem as initial LIGO, with additional DOF to control (SRM)
 - Locally controlled motion of mirrors should be much less (1000x in 1-10Hz band) than in initial LIGO due to active seismic isolation, but ...
 - Available force much smaller too
- Control longitudinal and angular DOF to requisite residual levels
 - Lengths: not significantly more stringent than initial LIGO will be easier due to reduced seismic noise
 - Angles: targeting 10x smaller residual, 10-9 radian, to reduce beam jitter noise
 - Must deal with significantly larger radiation pressure
- Provide a low-noise readout of the differential arm strain

GW channel readout

- □ RF readout, as in initial LIGO, using RF phase modulation of input light, demodulation of detected light
 - Except, with signal recycling, modulation sidebands not balanced at output
 - Leads to extremely stringent req. on phase noise of modulation source

□ DC readout – baseline design

- Small offset from carrier dark fringe, by pulling the arm cavities slightly off resonance (~1 pm)
- Carrier light is the local oscillator
- Phase is determined by fringe offset + contrast defect field
- GW signal produces linear baseband intensity changes
- Advantages compared to RF readout:
 - Output mode cleaner simpler
 - Photodetector easier, works at DC
 - Lower sensitivity to laser AM & FM
 - Laser/modulator noise ar RF not critical
 - Quantum-limited sensitivity nearly equal-to-somewhat better than RF

Quantum noise: RF vs DC readout

Output mode cleaner

Reduce the output power to a manageable level

- 20x higher input power (compared to initial LIGO) leads to 2-3x higher output power
 - 1-3 watts total power w/out a mode cleaner
- Output mode cleaner leaves only the TEM00 component of the contrast defect, plus local oscillator
 - tens of mW total power w/ mode cleaner
- Necessary for dc readout scheme
 - Technical laser intensity noise must be controlled

Conceptual design:

- Short (~1 m) rigid cavity, mounted in vacuum
- Modest isolation needs
- Coupled with in-vacuum photodetector

Core Optic Thermal Compensation

□ Thermal loading comparison

Parameter	Initial LIGO	AdL sapphire	AdL silica
Power in bulk material	100 W	2.1 kW	1.3 kW
Power in arms	13 kW	850 kW	530 kW
Total ITM absorbed power	25 mW	350-1600 mW	60-340 mW
ITM optical path distortion	20 nm	20-80 nm	50-300 nm
Required compensation	Point design	10x	20-50x

LIGO-G030268-00-D

Thermal compensation design

- Design utilizes a fused silical suspended compensation plate
 - No direct actuation on ITMs for greater noise tolerance, simplicity and lower power
- □ Two actuators:
 - Heater ring close to optic for large scale symmetric corrections
 - Scanned CO₂ laser directed from outside vacuum for small scale asymmetric corrections

Addt'l system level requirements

Technical noise sources

Each noise source must be held below 10% of the target strain sensitivity over the full GW band – down to 10 Hz

■ Non-gaussian noise

- Difficult to quantify a requirement, but components are designed to avoid potential generation of non-gaussian noise
- Detector availability as for initial LIGO
 - > 90% single, 85% double, 75% triple coincidence
- Environmental sensing
 - Initial LIGO PEM system basically adequate, some sensor upgrades possible
- Data acquisition
 - Same sample rate and timing requirements as initial LIGO
 - 16 bit ADCs still adequate for dynamic range
 - Large number of additional channels due to increase in controlled DOF