An additional Low Frequency Gravitational Wave Interferometric Detector for Advanced LIGO?

LIGO

Gianni Conforto, Riccardo DeSalvo California Institute of Technology La Biodola 28th May 2003

• In memory of Gianni

» Ω 20th of May 2003

• We conceived this idea together.

Frontier Detectors for... 28th of May 2003 New Scientific motivations Intermediate Mass Black Holes

- Advanced LIGO was designed to detect ns-ns inspirals, mergers and inspirals
- New X-ray and optical observations performed after the design of Adv-LIGO indicate the presence of
- new Lower Frequency GW sources
- Data summary from Cole's Miller, based observations of galaxies and globular clusters
- <u>http://www.astro.umd.edu/~miller/IMBH/</u>
- <u>http://online.kitp.ucsb.edu/online/bhole_c02/miller/oh/05.html</u>

LIGO Chandra's observations of M82 Matsumoto et al.

28 October 1999

20 January 2000

a	4.2	17	73	212

LIGO Concurring evidence of IMBH Central mass $M - \sigma$ relation

28th of May 2003

Observational facts

- Observed x-ray sources in globular clusters
- Eddington mass of sources $30 \sim 10^3$ s.m.
- Emission implies a feeding companion
- So many couples imply high density in globular clusters (optically observed 10⁶ stars/pc³)

LIG

Optical observations:

inspirals may be occurring at a catalyzed pace

- Systems high high mass slow down by dynamical friction
 (τ=10~50My) and sink to the center of the cluster
 where they are induced to merge
 - 1. Density of ~ million stars per cubic parsec optically observed
 - 2. Encounters tend to equalize kinetic energy, heavy masses get slowed
 - 3. Mass segregation occurs

- Smaller stars collect kinetic energy and angular momentum and export them to the periphery or out of the cluster
- Encounters of binaries with singles tend to tie and tighten up the bigger guy and fling out the smaller of the three

Optical observations: Swirl in clusters

- **<u>Swirl</u>** is observed in the core stars around central hidden mass
- But
- Frictional braking would rapidly eliminate the observed swirl!
- Explanation (controversial but growing evidence)
- Core stars around central BH cluster can soak angular momentum while hardening massive BH binaries or clusters at the center
- <u>Is swirl a catalyzed inspiral Smoking gun?</u>
- Coalesce may ensue at rapid rate! ~ 10 My not Gy !!!!

Frontier Detectors for... 28th of May 2003

Signal Detection

- The G W signal from the above mentioned and other sources will be detected with Interferometric Detectors
- Study of Full Relativistic regimes (BH merger and ringdown) require sensitivity in the 100 Hz region.
- Detection of the signal in the inspiral phase require sensitivity in the 10 Hz region.

LIGO

Predicted inspiral rate

- Assuming accretion of objects starting from a 10 M_{sun} BH
- Estimation for Adv-LIGO
- Adv-LIGO would preferentially see the initial accretions
- LF-GWID would see many more of these because of smaller effect of the merger frequency cutoff
 - •Cole Miller
 - •Very preliminary

Frontier Detectors for... 28th of May 2003

Template difficulties

- Templates allow optimized filter matching only up to a certain frequency
- Templates fail close to mergers thus strongly reducing the S/N ratio
- The higher the inspiral mass, the lower the cutoff frequency thus reducing the template effectiveness and the effective detection range
- Number of templates must grow from

25 to 10,000 (not counting BH spins)

LIGO

to recover the S/N from the last few orbits

- Unfeasible without triggering
- LF-GWID can trigger at LF
- Can apply all templates on follow-up at HF measurements of mergers and ringdowns

B. Iyer, T. D'Amour,B.S.Sathyaprakash, P. Jaranowsky

In numbers

Technical feasibility

- Low frequency GW sensitivity is of great astrophysical interest
- Advanced LIGO is foreseen and optimized to cover HF signals should not be diverted
- <u>Cannot be optimized for LF without some</u> <u>significant changes</u>
 - Reduce beam power and different finesse (rad. Pressure)
 - Use Fused Silica instead of Sapphire mirrors (bulk TN)
 - Use Supersized, double weight, mirrors (coating TN, rad. Pr)
 - Use Double length suspensions (susp. TN)
- Need separate and specialized Low and High Frequency interferometers

Frontier Detectors for... 28th of May 2003

Building a LF optimized interferometer

• Choice of materials and technologies

The new TN situation

- Now the bulk F.S. TN floor is crumbling.
- Three new measurements:
- Kenji's Q- factor measurements
- Gregg Harry, Steve Penn observed Fused Silica Q factors at and above 200 Million
 - Note: Sapphire show equally high Q factors but, unfortunately, the fact is irrelevant because of the thermo-elastic effect
- Phil's measurement of old LIGO test mass

Frontier Detectors for... 28th of May 2003

LIGO

Implications at L.F.

- Fused silica is the ideal choice for LF interferometers
- The thermal noise limit from coating thermal noise.
- Solutions
- Advanced coatings
- Large spot sizes
- possible now

may be in future

- Spot size effects:
- Bulk thermal noise ~ (spot diameter)^{-1/2}
- Coating thermal noise ~ (spot diameter)⁻¹
- Thermo-elastic noise ~ (spot diameter)^{-3/2}
- Large spot sizes are required

28th of May 2003

Effect of spot size

Bench and Kenji's estimations

x 2 gain from longer Suspensions, higher mass, and lower stored beam power

in solid Gregg and Enrico's Simulations on Bench

In blue dashes Kenji's "complete" TN simulation on Ansys (10^{-4} coating ϕ)

Signal to noise at 200 MPc

Inspiral	AdvLIGO	LF LIGO	Tandem
mass	S/N	S/N	S/N
1.4+1.4	4	4.4	>6
30+30	51.5 *	57.1 *	>80
50+50	78.9 [★]	87.4 *	>120

Tandem configuration allows much larger S/N (between $\sqrt{2}$ [equal range IFO] and 2 [fully separated f ranges]) !!

★ Assuming templates applicable throughout the frequency range, see Iyer et al. afterLF trigger and follow up at HF to recover full S/N for high mass objects merging in Adv-LIGO bandwidth At LF twice or more the effective signal to noise => ⇒ ~1 order of magnitude in observed volume for high mass obj.s

22

Can we accommodate a LF interferometer next to Adv-LIGO

Resuming

- A Virgo-like interferometer to cover the low frequency region at LIGO would be greatly desireable
- Advantages
- Lower frequency region is better covered (Explored volume >*3)
- Splitting up the frequency range between two different interferometers eases lots of design constraints and allows better performance from each
- Advanced LIGOs are free to be narrow banded
- For heavy massers, Adv.LIGO would be "triggered" by the LF optimal filter detection and allow disentangling final inspiral and merge signals and recover S/N

Frontier Detectors for... 28th of May 2003

Can we afford **not to** introduce a LF brother for Adv-LIGO

- Clearly <u>the newly observed BH are important and</u> <u>compelling potential GW sources for a LF</u> <u>interferometer</u>
- Optimized LF sensitivity allows

- study of the genesis of the large galactic BH believed to be central to the dynamics of galaxies and
- mapping the globular clusters in our neighborhood
- Enhancement of the performance of both Virgo and LIGO
- At LIGO with roughly a 10% increase of the projected costs the explored volume in the Universe can be increased by at least a factor of 3 for ns-ns inspirals, and much more for heavier mass objects.
- Similarly, but at a higher cost, at Virgo

The End !

- Frequently Asked Questions (for offline discussions)
 - Comments for LIGO

- Comments for Virgo
- Are wide beams feasible?
- Is gravity gradient a problem
- Do we need a new design?
- When and where to implement LF-GWIDs?
- Can we afford LF-GWID?
- LF-GWID Characteristics
- How big a mirror can we make?
- Is Virgo an optimized LF-GWID?
- Is there space in Virgo for a HF companion?
- What would be the interest for Virgo in LF companions?
 - Are LF interferometers in the LIGO facilities adequate LF companions for Virgo
 - Should EGO push to build Low Frequency companion(s) for LF coincidence detection in the LIGO facilities?
- Effect of spot size and better catings
- More on event rates

Comments for LIGO

- Adv-LIGO is designed for broadband over a different set of possible sources and consequently does not cover well the Low Frequency range as well as an IFO exclusively targeted at this range
- Ignoring the LF range could be dangerous because it contains many juicy, and observed, GW signal generator candidates
- Redesigning Adv-LIGO to cover it would be awkward and take too long and it would uncover the equally important High Frequency range
- Adding a simple Low Frequency interferometer is the simplest and best choice!

Frontier Detectors for... 28th of May 2003

Comments for Virgo

- Virgo needs matching LF coincidence partner(s) to optimize its science goals
- Adv-LIGO is unlikely to be optimized for the low frequency range and would profit greatly both in reach and scientific scope from LF companions
- Building the LF GWIDs in the LIGO vacuum pipes is cost effective
- The relative orientations makes that two Virgo-likes in the LIGO pipes allow <u>both</u> coincidence detection <u>and</u> coverage of both emission polarizations.

Frontier Detectors for... 28th of May 2003

LIGO

How to reduce the coating noise problem

Mexican hats proposed by Kip Thorne et al. are a solution

http://www.ligo.caltech.edu/docs/G/G030137-00/

A Flat-topped beam averages over bumps much more effectively than a Gaussian beam.

Is gravity gradient going to stop us?

Adv-LIGO estimation based on worse of best 90% Of data stretches, including transients!

Comments on GG

• G.C. Cella evaluations give similar results

- Even if the GG was to be low only in windless nights, it would be worth having the listening capability 50% of the time
- LF-LIGO would give us the opportunity to test GG subtraction techniques

Frontier Detectors for... 28th of May 2003

LIGO

Does gravity gradient negate the advantages?

- With longer mirror suspensions (1-1.5m) the suspension thermal noise is pushed at lower frequency
- Gravity gradient limitations get uncovered
- Can start testing GG subtraction techniques
 - Note: Clearly for the future will need to go underground to fight GG
- Even above ground there is so much clear frequency range to allow substantial detection improvements

Is gravity gradient going to stop us?

Do we need a new design?

- Virgo optical and control design is nearly optimal,
 - The Virgo interferometer is (or soon will be) fully validated.
 - Will only needs minor improvements and some simplifications
- Laser can be the same as LIGO (lower power)
- Seismic Attenuation and Suspensions
 - large optics: already developed for advanced LIGO (downselected at the time)
 - Small optics: use TAMA-SAS design
 - Both well tested

All components off the shelf and tested.

Technically we can build it almost immediately

Frontier Detectors for... 28th of May 2003

LIGO When and where to implement LF GWID?

- Cannot disrupt Adv-LIGO operations
- Above the Adv.-LIGO beamline => must be installed forward of Adv-LIGO
- At least all the main mirror vacuum tanks must, but probably all of the interferometer should, be installed at the same time as Adv-LIGO

Can we afford LF GWIDs

- LSC and Advanced LIGO have decided not to pursue the L.F. option to focus on different possible sources, and dedicated all available sources to it
- A L.F. interferometer can be done only with external support
- A LF brother for Adv-LIGO would be a simpler and cheaper interferometer.
- Seismic and suspension design is available using the inexpensive, existing, and well validated, SAS and Virgo concept
- There is space in the existing facilities,
 - except small buildings for mode cleaner end towers if needed.

Can we afford a LF GWID

• Estimation of project costs:

Color code: Prices per unit Price per interferometer

- Large Vacuum tanks (2 m diameter ~Virgo design)
- Large SAS tower (including control electronics)
- Mirrors

- 7 or 8 systems(vacuum+SAS+mirror) per interferometer
- Small vacuum tank and TAMA-SAS suspensions
- 6 to 8 needed per interferometer
- Small optics
- Laser
- Gate valves
- 6 needed
- New building for mode cleaner, and 150 m vac pipe:
- Design
- Various
- Total per interferometer
- Spares (1 set optics)

		Cost source
0.4	Meu	Actual Cost
.25	Meu	A.C./Bids
0.3	Meu	Bids
7.6	Meu	
0.2	Meu	A. C. + Bids
1.6	Meu	
0.2	Meu	Est.
0.5	Meu	rec. LIGO
0.1	Meu	A.C.
0.6	Meu	
0.5	MUS\$	Est. F. Asiri
0.5	Meu	Est./A.C.
3.0	Meu	Est.
14.5	Meu	
4.0	Meu	

LIGO

Can we afford a LF-GWID

•	We are talking of		15 M US\$
•	per interferometer for components		
	+ for spares		5 MUS\$
•	Manpower estimated staff of		
•	20 persons for 5 years	for 1 interferometer,	
•	30 persons	for 2 interferometers	
	 at100,000US\$ per person/year, 	for 1 interferometer for 2 interferometers	10 MUS\$ 15 MUS\$
•	Estimated Grand Total		
•	for one interferometer		30 MUS\$
•	for two interferometers		50 MUS\$

L F GWID Characteristics

- Shortened SAS to fit under roof
- Longer mirror suspensions
 - Suspension T.N. freq. cut ~ $1/\sqrt{L}$
- Everything hanging down
- Auxiliar suspended tables above beam line for pickoff, etc.
- Stay out of the way of Adv. LIGO

How big a mirror can we get?

- larger mirrors are feasible today
 - 75 Kg fused silica
 - 430 mm diameter
 - (Heraeus bid)

Is Virgo an optimized LF GWID?

- Mostly yes, but needs its scheduled upgrades
 - Monolithic Fused Silica suspensions for suspension thermal noise
 - New mirrors, (including to replace the low-Q Herasyl mirrors at the end stations) possibly heavier ones.
- Mexican hat mirrors would be necessary to reduce the coating thermal noise problem
 - And a new injection telescope to match the wider beam

LIGO

Is there space in Virgo for a HF companion?

- A new L building should be built in front of the central building to house the companion, as well as new or enlarged end stations.
- The Virgo beam is in the center of the beam pipe; during the Virgo upgrade the fused silica suspensions should be made longer to lower the beam line and make space for an HF companion.
- Given the location of the present gate valves, venting of the 3 Km pipes would be necessary to install the companion vacuum tanks.

Low Frequency companion?

- Virgo is already focusing on low frequencies where the new observed possible sources may emit.
- Why should it need a companion?
- Present LIGO has essentially no LF capabilities
- Adv-LIGO will have broad-band capabilities but it will run optimized for high frequency narrow-banding,
- •
- The LF range may not be sufficiently covered by LIGO to provide optimized coincidence

Frontier Detectors for... 28th of May 2003

- Economically it makes lots of sense,
- Two independent interferometers can be built without having to build new facilities
- No new concepts or difficult developments are needed
 The Virgo concept is perfectly adequate

Frontier Detectors for... 28th of May 2003 **Signature** LF interferometers in the LIGO facilities adequate LF companions for Virgo

- The LIGO facilities are not well aligned with Virgo,
- But two of them are available
- Coincidence running <u>and</u> coverage of both source polarizations are possible if two LF-GWID are implemented!!!
- Three point observation gives the best pointing capabilities.
- This development could be made while developing new generation IF in new facilities

Interesting question.

Matthew Benacquista

- How did the inferred 1000 s.m. BH get in cores of globular clusters?
- Star merger in cluster core + direct collapse?
- Or

- Sequential accretion of ~10 s.m. BH?
- Presence or absence of GW signal give the answer

Older motivations?

Frontier Detectors for... 28th of May 2003

Other motivations? Cosmic background

- The sensitivity to GW cosmic background (if the background is flat in frequency) would increase at LF with f^{-3/2} and
- The GW background signal coherence of LF interferometers would be almost perfect

Albert Lazzarini http://www.ligo.caltech.edu/docs/G/G030242-01/

Frontier Detectors for... 28th of May 2003

LIGO

What happens if one could have a better coating Q-factor!

Effect of spot size

For spot size effects on sapphire, see Erika D'ambrosio, ref. 28th of May 2003

LIGO

Predicted inspiral rate

- If central BH initial mass is higher, the Adv-LIGO detection rate is strongly depressed by LF and template limitations.
- a LF-GWID inspiral would recover the high detection rate by a large factor

Frontier Detectors for... 28th of May 2003

Predicted inspiral rate

- ΔM assumed to be $\Delta M=10 M_{sun}$
- If accretion was with bigger increments (say $\Delta M=30 M_{sun}$) - (Heavier masses are slowed down first)
- Number of accretion events $\sim 1/\Delta M$
- But signal amplitude and detectable range $\sim \Delta M$
- Number of detectable events $\sim \Delta M^2$
- If lower frequency sensitivity is available

Frontier Detectors for... 28th of May 2003 LIGO

Signal to noise at 200 MPc

Inspiral mass	Adv LIGO	LF LIGO
1.4+1.4	5/N 4	S/N 4.4
30+30	51.5★	57.1 ★
50+50	78.9★	87.4 ★

Q silica 50M (conservative) Coating Phi 2 10⁻⁵

A-LIGO seis. Wall @ 10 Hz Standard configuration

LF-L susp. Noise limited

Bench/Gregg Harry

★ •Assuming templates applicable throughout the frequency range, see Iyer et al.

Frontier Detectors for... 28th of May 2003

What is relevant for LF-GW observations

- <u>Tens of BH-BH detectable inspiral events per year are</u> <u>expected</u> Coleman Miller. Astrophysics Journal 581: 438-450, Dec 2002
- GW Signals from massive BH will carry farther than NS
 - Signal amplitude roughly proportional to mass
 - Can reach much farther M^3 (if not limited in freq.)
- BUT
- Most signals start above $20+20 M_{sun}$.
 - Close to ISCO difficult to make templates

Frontier Detectors for... 28th of May 2003

LIGO Other motivations? BH chirp and ringdown

- final chirp frequency can be approximated by:
- $f \sim 4.4/(M/M_{sun}) kHz$
 - $-100 M_{sun}$ systems at 44 Hz,
 - 1000 M_{sun} systems at 4.4 Hz

- Kerr BH ringdown frequency after merger for mass M: f ~ (32/M) kHz
 - » (J. Creighton, gr-qc/9712044 or F. Echeverria, PRD 40, 3194 (1989))
- ringdown for a 1000 M_{sun} BH at ~ 32 Hz.

Matthew Benacquista

Frontier Detectors for... 28th of May 2003

28th of May 2003

Implications at L.F.

- Fused silica allows for much lower thermal noise floor at L. F. (if coating problem is solved)
- Fused Silica only tolerates "lower" beam power
- At lower frequencies much lower power is required $(\sim 1/f^2)$
- larger beam sizes => less beam power problem
- Fused silica is the ideal choice for LF interferometers

Frontier Detectors for... 28th of May 2003