

LIGO SCIENCE

Kip S. Thorne
CaRT, California Institute of Technology

LIGO PAC Meeting Pasadena, 5 June 2003

LIGO-G030293-00-R

From Initial Interferometers to Advanced

Conventions on Source/Sensitivity Plots

- Assume the best search algorithm now known
- Set Threshold so false alarm probability = 1%

Overview of Sources

- Neutron Star & Black Hole Binaries
 - » inspiral
 - » merger
- Spinning NS's
 - » LMXBs
 - » known pulsars
 - » previously unknown
- NS Birth (SN, AIC)
 - » tumbling
 - » convection
- Stochastic background
 - » big bang
 - » early universe

Neutron Star / Neutron Star Inspiral (our most reliably understood source)

Science From Observed Inspirals: NS/NS, NS/BH, BH/BH

- Relativistic effects are very strong -- e.g.
 - » Frame dragging by spins → precession → modulation
 - » Tails of waves modify the inspiral rate

$$- M_{chirp} = \mu^{3/5} M^{2/5} \text{ to } \sim 10^{-3}$$

- Search for EM counterpart, e.g. γ -burst. If found:
 - » Learn the nature of the trigger for that γ -burst
 - deduce relative speed of light and gw's to ~ 1 sec / $3x10^9$ yrs ~ 10^{-17}

Neutron Star / Black Hole Inspiral and NS Tidal Disruption

Black Hole / Black Hole Inspiral and Merger

- 10Msun / 10 Msun
 BH/BH Binaries
- Event rates
 - » Based on population synthesis [Kalogera's summary of literature]
- Initial IFOs
 - » Range: 100 Mpc
 - $\gg \leq 1/600$ yrs to $\sim 3/y$ r
- Advanced IFOs -
 - » Range: z=0.45
 - > \leq 1/ month to \sim 30 / day

BH/BH Mergers: Exploring the Dynamics of Spacetime Warpage

Mapping Black Hole's Curvature & Probing Its Horizon

- BH captures in globular clusters → intermediate-mass BH:
 100 1000 Msun [Cole Miller]
- Inspiral of ~ 1 Msun NS or few Msun BH into ~1000 Msun BH → first cut at one of LISA's prime goals:
 - » Map of big hole's spacetime curvature
 - » Probe of big hole's horizon

Massive BH/BH Mergers with Fast Spins - Advanced IFOs

Spinning NS's: Pulsars

- NS Ellipticity:
 - Crust strengthε≤10⁻⁵
- Known Pulsars:
 - » First Interferometers:
 - $\varepsilon \gtrsim 3x10^{-6} (1000Hz/f)$ x (distance/10kpc)
 - » Narrowband Advanced
 - $\varepsilon \gtrsim 2x10^{-8} (1000Hz/f)^2$ x (distance/10kpc)
- Unknown NS's All sky search:
 - » Sensitivity ~5 to 15 worse

Spinning Neutron Stars: Low-Mass X-Ray Binaries

- Rotation rates ~250 to ~600 revolutions / sec
 - » Why not faster?
 - » Bildsten: Spin-up torque balanced by GW emission 10⁻²² torque
- If so, and steady state: X-ray luminosity → GW strength
- Combined GW & EM
 obs's → information about:
 - crust strength & structure,
 temperature dependence of
 viscosity, ...
 10

NS Birth: Tumbling Bar; Convection

Born in:

- » Supernovae
- » Accretion-Induced Collapse of White Dwarf

If very fast spin:

- » Centrifugal hangup
- Tumbling bar episodic? (for a few sec or min)
- » If modeling gives enough waveform information, detectable to:
 - Initial IFOs: ~5Mpc (M81 group, ~1 supernova/3yr)
 - Advanced IFOs: ~100Mpc (~500 supernovae/yr)

If slow spin:

- » Convection in first ~1 sec.
- » Advanced IFOs: Detectable only in our Galaxy (~1/30yrs)
- » GW / neutrino correlations!

Some Payoffs from Later Incremental Upgrades

- Monitoring & removing Newtonian grav'l noise
 - » Increase by factor 1.75 the mass of most massive intermediate black holes that can be studied
- Replace Gaussian beams by top-hat beams in IFO arms
 - » Increase event rate for NS/NS, NS/BH, BH/BH by factor 3
 - » Beat Standard Quantum Limit (circumvent Heisenberg Uncertainty Principle for 40 kg "particles"

Some Payoffs from Later Incremental Upgrades

Insert squeezed vacuum into dark port

- » Reduce laser power, for given sensitivity, by up to factor 10
- » Improve sensitivity in wide-band mode at frequencies ~300 to 1500 Hz by factor 2 or more

Variable transmission SR mirror

- » Improve sensitivity in searches for spinning neutron stars at frequencies ~ 300 to 1500 Hz by factor ~ 2
- » Improve sensitivity for studies of NS tidal disruption by BH's

of our universe

Stochastic Background from Very Early Universe

 GW's are the ideal tool for probing the very early universe

- From effect on primordial nucleosynthesis
- $\Omega = (GW \text{ energy density})/(closure density}) \leq 10^{-5}$

Stochastic Background from Very Early Universe

Detect by

- cross correlating output
 of Hanford & Livingston
 4km IFOs
 10⁻²²
- Good sensitivity requires
 - » (GW wavelength) ≥2x(detector separation) -23
 - » f ≤ 40 Hz
- Initial IFOs detect if
 - $\Omega \gtrsim 10^{-5}$
- Advanced IFOs:

Grav'l Waves from Very Early Universe. Unknown Sources

- Waves from standard inflation: $\Omega \sim 10^{-15}$: much too weak
- BUT: Crude superstring models of big bang suggest waves might be strong enough for detection by Advanced IFOs

- GW bursts from cosmic strings: possibly detectable by Initial IFOs
- Energetic processes at (universe age) ~ 10⁻²⁵ sec and (universe temperature) ~ 10⁹ Gev M, GWs in LIGO band
 - » phase transition at 10⁹ Gev
 - » excitations of our universe as a 3-dimensional "brane" (membrane) in higher dimensions:
 - Brane forms wrinkled
 - When wrinkles "come inside the cosmological horizon", they start to oscillate; oscillation energy goes into gravitational waves
 - LIGO probes waves from wrinkles of length ~ 10⁻¹⁰ to 10⁻¹³ mm
 - If wave energy equilibrates: possibly detectable by initial IFOs
- Example of hitherto

 UNKNOWN SOURCE

Conclusions

- LIGO's Initial Interferometers bring us into the realm where it is plausible to begin detecting cosmic gravitational waves.
- With LIGO's Advanced Interferometers we can be confident of:
 - » detecting waves from a variety of sources
 - gaining major new insights into the universe, and into the nature and dynamics of spacetime curvature, that cannot be obtained in any other way