

Setting upper limits on the strength of periodic GWs using the first science data from the LIGO and GEO detectors

Bruce Allen, University of Wisconsin – Milwaukee **Graham Woan**, University of Glasgow
On behalf of the LIGO Scientific Collaboration

Amaldi Meeting, 9 July 2003

CW/Pulsars Working Group

- Co-Chairs:
 - Maria Alessandra Papa (AEI, GEO) Mike Landry (LHO Hanford, LIGO)
- Search code development work has been underway since mid-to-late 1990s
- For S1: set upper limit on a single known pulsar using two independent methods:
 - » Frequency domain (optimal for large parameter space searches)
 - » Time domain (optimal for targeted searches)
- For S2: set upper limits on all known pulsars and do some wide-area and targeted searches (last slide)

Expectations for Sensitivity to Continuous Waves from Pulsars

Colored curves: S1 sensitivity for actual observation time @1% false alarm, 10% false dismissal:

$$\langle h_0 \rangle = 11.4 \sqrt{\frac{S_h(f)}{T_{obs}}}$$

- Solid curves: Expected instrumental sensitivites for One Year of Data
- Dotted curves: NS @ 8500 pc with equatorial ellipticities of:

$$\varepsilon = \delta I/I_{zz} = 10^{-3}$$
, 10⁻⁴, and 10⁻⁵

Dots: Upper limits on ho if observed spindown all due to GW emission

S1: NO DETECTION EXPECTED

Known/Unknown Parameters

Parameters needed for search:

- Frequency f of source in Solar System Barycenter (SSB)
- Rate of change of frequency df/dt in SSB
- Sky coordinates (α, δ) of source
- Strain amplitude h₀
- Spin-axis inclination 1
- Phase, Polarization φ, ψ

4

Frequency domain method

- Input data: Short Fourier Transforms (SFT) of time series
 - » Time baseline: 60 sec
 - » High-pass filtered at 100 Hz
 - » Tukey windowed
 - » Calibrated once per minute
- Dirichlet Kernel used to combine data from different SFTs (efficiently implements matched filtering)
- Detection statistic: $F = likelihood ratio maximized over the three unknown parameters: Orientation 1, Phase <math>\varphi$, Polarization ψ .
- Use signal injection Monte Carlos to measure Probability Distribution Function (PDF) of F
- Use frequentist approach to derive upper limit (extensive simulations to determine detection efficiency)

The data: time behaviour (4 Hz band around 1283 Hz)

The data in frequency

CW: Measured PDFs for the F statistic LIGO with fake injected worst-case signals at nearby frequencies

Note: hundreds of thousands of injections were needed to get such nice clean statistics!

Computational Engine

Searchs run offline at:

- Medusa cluster (UWM)
 - » 296 single-CPU nodes (1GHz PIII + 512 Mb memory)
 - » 58 TB disk space
- Merlin cluster (AEI)
 - » 180 dual-CPU nodes (1.6 GHz Athlons + 1 GB memory)
 - » 36 TB disk space
- CPUs needed for extensive
 Monte-Carlo work

Time domain method

- Method developed to handle NS with ~ known complex phase evolution. Computationally cheap.
- Two stages of heterodyning to reduce and filter data:
 - » Coarse stage (fixed frequency) 16384 ⇒ 4 samples/sec
 - » Fine stage (Doppler & spin-down correction) 240 ⇒ 1 samples/min
- Noise variance estimated every minute to account for non-stationarity.
- Standard Bayesian parameter fitting problem, using time-domain model for signal -- a function of the unknown source parameters h_0 , ι , ϕ , ψ .

Time domain: Bayesian approach

- Uniform priors on φ [0,2 π], ψ [- π /4, π /4], $\cos \iota$ [-1,1] and h_0 [0, ∞]. Gaussian likelihood for the data using noise variance estimated from the data.
- Results are expressed in terms of the posterior PDF for h₀, marginalizing with respect to the nuisance parameters ι, φ, ψ (which could be determined if necessary).
- Upper credible limit determined from cumulative probability for h₀.

Posterior PDFs for CW time-domain analyses

LIGO-G030328-00-Z

shaded area = 95% of total area

Results from the continuous wave search

No evidence of continuous wave emission from PSR J1939+2134.

Summary of 95% upper limits for h_o:

<u>IFO</u>	Frequentist FDS	Bayesian TDS
GEO	(1.9±0.1) x 10 ⁻²¹	(2.2±0.1) x 10 ⁻²¹
LLO	(2.7±0.3) x 10 ⁻²²	(1.4±0.1) x 10 ⁻²²
LHO-2K	(5.4±0.6) x 10 ⁻²²	(3.3±0.3) x 10 ⁻²²
LHO-4K	(4.0±0.5) x 10 ⁻²²	(2.4±0.2) x 10 ⁻²²

- $h_o < 1.4 \times 10^{-22}$ constrains **ellipticity < 2.7 x 10**⁻⁴ (M=1.4 M_{sun}, r=10 km, R=3.6 kpc)
- Previous results for this pulsar: $h_o < 10^{-20}$ (Glasgow, Hough et al., 1983), $h_o < 1.5$ x 10^{-17} (Caltech, Hereld, 1983).

Pulsar Time domain method:

- » Upper limits on all known pulsars > 50 Hz
- » Search for Crab
- » Develop specialized statistical methods (Monte-Carlo Markov Chain) to characterize PDF in parameter space

Pulsar Frequency domain method

- » Search parameter space (nearby all-sky broadband + deeper small-area)
- » Specialized search for SCO-X1 (pulsar in binary)
- » Incoherent searches: Hough, unbiased, stack-slide

LIGO/GEO Summary

Burst

» For 1ms Gaussian pulses:1.6 events/day rising up as the detection efficiency reduces (50% efficiency point is at h_{rss}~3x10⁻¹⁷).

Stochastic

- » H1-H2 cross-correlation contaminated by environmental noise (anticorrelation corresponds to $-9.9 < h^2_{100} \Omega_{GW} < -6.8$)
- » Limit from H2-L1 (with 90% confidence): $h_{100}^2\Omega_{GW}$ (40Hz 314 Hz) < 23±4.6

Inspiral

- » No event candidates found in L1-H1 coincidence
- » 90% confidence upper limit: inspiral rate < 170/year per Milky-way equivalent galaxy, in the (m1, m2) range of 1 to 3 solar masses.</p>
- Pulsar (two methods used)
 - » h_o <1.4x10⁻²² (from L1). Constrains ellipticity < 2.7x10⁻⁴
 - » Beautiful agreement between theoretical and actual noise statistics!