

LIGO S2 Overview

Philip Charlton

California Institute of Technology On behalf of the LIGO Scientific Collaboration

> 10th Marcel Grossman Meeting On General Relativity *Rio de Janeiro, Brazil July 20-26, 2003*

Commissioning History

Estimated Noise Limits for S2

LIGO

Changes Between S1 and S2

- Digital Suspensions installed on LHO-2K and LLO-4K
 - New coil drivers and real-time control code for suspensions
 - Lower noise, switchable dynamic range (200 mA acquisition, 5 mA running)
 - Separate DC biases for alignment
 - Better filtering, diagonalization and control/sequencing features
- Optical lever improvements
 - Structural stiffening (designed for thermal/kinematic stability, not low vibration)
 - Improved filtering to take advantage of reduced resonances
 - Pre-ADC "whitening" for improved dynamic reserve
- More Power
 - Enabled by better alignment stability
 - Also required control of "I-phase" photocurrent (overload)
 - > Now ~1.5 W into mode cleaners, ~40 W at beamsplitter (R~40)
 - Only 10-20 mA average DC photocurrent at dark ports (optics very good)

Second Science Run (S2)

- February 14 April 14, 2002 (~1400 hours)
- Three LIGO interferometers and TAMA (Japan)
- Steady improvement in sensitivity continues
 - Approximately 10x improvement over S1
- Duty cycle similar to S1
 - Increased sensitivity did not degrade operation
 - Longest locked stretch ~66 hours (LHO-4K)

	LLO-4K	LHO-4K	LHO-2K	Triple Coinc
Duty cycle (cf. S1)	37% (42%)	74% (58%)	58% (73%)	22% (24%)

S1 Lock Statistics

S2 Lock Statistics

Stability improvements for S2

- Wavefront sensing (WFS) for alignment control
 - Uses the main laser beam to sense the proper alignment for the suspended optics
 - Complex 10 coupled degrees of freedom
 - Sensing degrees-of-freedom different from control degrees-of-freedom
- S1

All interferometers had 2 degrees-of-freedom controlled by WFS

- S2
 - LHO-4K: 8 of 10 alignment degrees-of-freedom under feedback control
- Now
 - LHO-4k and LLO: All 10 degrees of freedom controlled by WFS

S2 Sensitivity and Stability

Major Ongoing Commissioning Activities

- Seismic retrofit at LLO
- Finish wavefront sensing alignment system
- RFI cleanup, linear power supplies
- Shot noise sensitivity
 - Thermal lensing
 - Increase of number of photodiodes
- Reduce acoustic coupling
- Numerous smaller tasks

Seismic Isolation Upgrade

- Upgrade of Seismic Isolation System at LLO
 - Seismic noise environment much worse below 10 Hz than originally planned (logging largest factor, but also train, other anthropogenic noise)
 - Plan is to add an active, external pre-isolation (EPI) stage without disturbing the alignment of the installed optics
- Current Plan:
 - Continue prototype testing at MIT
 - Order components, fabricate and assemble; fabrication/assembly phase lasts ~5.5 months
 - Installation starts ~Jan '04 and should complete ~Apr '04

23/7/2003

LIGO Document G030342-00-C

Shot Noise Sensitivity

- Simplistic power calculations suggests factor of ~2 shortfall
 - 10x increase in laser power would give factor
 3 improvement
- Does not take improved sideband efficiency into account

Optical characterization

- Good news: optics quality is (almost all) good
 - Recycling gain meets or exceeds goals (design was >30)
 - LLO-4K : Gain of nearly 50 seen, more usually about 45
 - LHO-4K : Gain of 40-45
 - Contrast defect meets or exceeds goals (design was < 10⁻³)
 - LLO-4K : P_{as}/ P_{bs} = 3 x 10⁻⁵
 - LHO-4K : P_{as}/ P_{bs} = 6 x 10⁻⁴
 - LHO-2K: Cause of low recycling gain (20) discovered
 - Bad AR coating on ITMX, has been replaced
- Low RF sideband gain/efficiency
 - ➤ LHO-4K : Sideband power efficiency to AS port: ~6%
 - Cause: thermal lensing in the ITMs isn't at the design level
 - Achieving shot noise goal requires that this be fixed

Thermal LIGO Lensing

RF sideband efficiency is low

- Power recycling cavity slightly unstable: lack of Input Test Mass (ITM) thermal lens makes $g_1 \cdot g_2 > 1$
- Recycling Mirror (RM) curvature relies on point design for thermal lensing
- Heating differs from design value

Possible solutions

- Change RM (w/ new radius of curvature); 6 month lead time
- Add the missing heat to ITMs with another source (AdvLIGO or GEO technique)
- Pursued in parallel with other commissioning activities LIGO Document G030342-00-C

Bad mode overlap

DC (carrier)

RF sidebands 17

Acoustic Peaks

- Peaks occur in 80-1000 Hz band, at 10-100x required level
- Source for LHO correlated noise (stochastic search)
- Investigating:
 - Acoustic isolation improvements
 - Modify output periscopes/mirror mounts: stiffer, damped
 - Active beam direction stabilization

Acoustic Excitations

Summary

- Commissioning of detectors progressing well
 - Steady progression on all fronts: sensitivity, duty cycle, stability
 - Next Science Run: S3, Nov 2003 Jan 2004
- First science analyses underway
 - S1 results demonstrate analysis techniques, S2 data (and beyond) offer a real possibility to detect gravitational waves
 - Developing synergy between detector commissioning and data analysis efforts
 - Four analysis papers (and one instrumental) in final stages of preparation
- Design performance (both sensitivity and duty cycle) should be achieved next year