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Fabry-Perot dynamic responses

The response of a Fabry-Perot cavity with the length L to
small variations of its length is given by

HL(s) =
1− rarb

1− rarbe−2sT
,

where ra, rb are mirror reflectivities and T = L/c is the
photon propagation time. The response to variations of
the laser frequency is

Hω(s) = C(s) HL(s),

where C(s) is the frequency-to-length transfer function

C(s) =
1− e−2sT

2sT
.

Bode plots of HL (left) and Hω (right) shown on the same scale.
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Derivation can be found in Phys. Lett. A 305 (2002) p.239.
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Swept sine of the laser frequency
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A sine-wave δVd(s) is injected to the VCO. The AOM off-
sets the light frequency by δω(s) = const δVd(s). The PSL
servo forces the laser to shift its frequency in the opposite
way by

δω′(s) =
G(s)

1 +G(s)
δω(s),

where G(s) is the PSL loop gain. For large gain, δω′(s) ≈
δω(s).

Changes in the laser frequency cause variations in the
PDH-signal: δVs(s). The transfer function is

δVs(s)

δVd(s)
=
δVs(s)

δω(s)

δω(s)

δVd(s)
≈ const Hω(s).
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Transfer function Hω

The measured transfer function, δVs(s)
δVd(s)

, is shown in the

figure below. It has sharp features caused by the carrier
and sideband resonances. The carrier resonances occur
at multiples of the FSR whereas the sideband resonances
occur at roughly half-way between the FSR dips. All these
resonances will be discussed in detail below.
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Location of resonances

FSR

S S

C C

+1−1

ac acac ac
a s a s sa as

C – resonances of the Fabry-Perot cavity. (The carrier is
locked to one of the resonances. The separation between
the resonances is the free spectral range (FSR).)

S±1 – the location of the first-order RF sidebands. They
are 652 FSR’s away from the corresponding carrier.

Modulation of the laser frequency causes audio sidebands
on the light:

ac – audio sidebands on the carrier,

as – audio sidebands on the RF-sidebands.

The resonances occur when either ac or as coincides with
multiples of the FSR.
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Hω near the FSR

The response of the cavity to changes in the laser fre-
quency is

Hω(s) =

(

1− e−2sT

2sT

) (

1− rarb

1− rarbe−2sT

)

.

Near the FSR the transfer function can be approximated
as

Hω(s) ≈
s− z1

s− p1
.

The zero and pole are z1 = 2πi FSR and p1 = z1−
1
τ
, where

τ = 1.7 ms is cavity storage time.
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Hω near the FSR (0.1-Hz span)
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horizontal axis: x = f − fc, where fc = 37520.164237 Hz.

LSQ fit yields the FSR and the length:

f0 = 37520.1602 Hz,

L = 3995.084996 m.

The errors are found using the matrix-inversion method
and also R. Coldwell’s technique,

δf0 = 0.0011 Hz,

δL = 0.00012 m.
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Hω+∆Hω near
1
2FSR

Correction to the PDH signal from the 1st order RF side-
bands excited in the cavity is

∆Hω(s) = −eiγ
qρ

1− q
H1(s) + e−iγ

q∗ρ

1− q∗
H−1(s).

Here H±1 are the sideband transfer functions:

H±1(s) =
1

1− q±1 e−2sT
, where q±1 = rarb e

±2iψ,

and ψ is the sideband propagation phase in the arm cavity.

Bode plots of Hω +∆Hω in the vicinity of
1
2
FSR
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Hω+∆Hω near
3
2FSR

The modulation frequency is fmod = 24,481,326 Hz. The
corresponding propagation phase is

ψ = 2πfmodT.

Frequency calibration was done with the Rubidium Fre-
quency Standard SRS FS725.

Correction to the frequency array on the spectrum analyzer
was 0.404 Hz.

Bode plots of Hω +∆Hω in the vicinity of
3
2
FSR
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Swept sine of the cavity length
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A sine-wave δVd(s) is injected to the suspension control
module to produce the force on the mass:

δF (s) = const δVd(s).

The force generates displacement:

δL(s) =
1

m
Hp(s)δF (s),

where Hp(s) is the pendulum transfer function. For high
frequencies, Hp(s) ≈ 1/s2.

Variations in the PDH-signal: δVs(s). The transfer func-
tion:

δVs(s)

δVd(s)
=
δVs(s)

δL(s)

δL(s)

δVd(s)
≈

const

mω2
FSR

HL(s).
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Transfer function HL

The response of a Fabry-Perot cavity to changes of its
length is given by

HL(s) =
1− rarb

1− rarbe−2sT
.

Near the FSR the transfer function can be approximated
as

Hω(s) ≈
1

s− p1
,

where p1 = 2πi FSR − 1
τ
is a complex pole and and τ =

1.7 ms is cavity storage time.
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Arm-length mismatch

The magnitude of the transfer function has a small wiggle
near the top. This feature is reproduced by numerical
models (Finesse and e2e) and indicates a difference in the
arm lengths of 3–4 cm (Y arm shorter). The simulation
results (below) are obtained with the arm-length mismatch
= 4 cm.
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Anti-resonance of RF-sidebands

If the modulation frequency is tuned across the anti res-
onance point (1

2
FSR), transfer function Hω changes in an

abrupt way. Its phase can have either steady roll-offs or
fast switch-backs. This abrupt change in the transfer func-
tion can be used to determine the arm lengths.
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Precision length measurement

The precision is limited by the minimum step size (1 Hz) of
the frequency synthesizer. The cavity lengths thus mea-
sured are

LX = 3995084.18± 0.08 mm,

LY = 3995044.37± 0.08 mm.

The 39.81 mm arm-length difference is consistent with the
measurement of HL shown above.
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Discontinuity in the phase

The abrupt change in the phase of the transfer function
can be understood using phasor representation. As the
frequency changes, the tip of the phasor travels along a
circular contour. (For simplicity, it is shown by a circle.)

• if the origin is outside the contour the phase changes
from 0 to some maximum value (Φm) and back to 0.
The maximum value is defined by proximity of the ori-
gin to the contour. The phasor is moving retrograde
between the two extreme angles.

• If the origin is inside the contour, the phase monoton-
ically changes from 0 to 3600.

Nyquist diagram
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Characterization of LIGO FP cavities

The present work is a part of a larger effort aimed at
complete characterization of the LIGO arm cavities. The
measurements described above are closely related to other
investigations, some of which are

• fix 4-km Schnupp asymmetry

• match the arm cavity lengths

• measure and set the demodulation phases

• calibrate and tune the modulation frequency

Other experiments that can be done using the techniques
and concepts described above are

• monitor long-term (tidal) changes of the arm lengths

• measure the arm-cavity g-factors

• extract the mirror radii of curvature

• study mechanical resonances of the mirrors

• search for GW at frequencies near the first FSR
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