Quantum locking of mirrors in interferometric measurements

Antoine HEIDMANN Jean-Michel COURTY Michel PINARD

Laboratoire Kastler Brossel, Paris CNRS Ecole Normale Supérieure Université Pierre et Marie Curie

Quantum noises in interferometers

Quantum locking of mirrors: Local control of mirror motion

Quantum noises in interferometers

Quantum noises:

$$\delta \phi^{in} \propto 1 / \sqrt{P^{in}}$$

 $\delta \mathbf{x}_m$

$$\delta x_m \propto \sqrt{P^{in}}/M\Omega^2$$

Quantum locking of mirrors

- Measurement of mirror motion with a high-finesse Fabry-Perot cavity
- Locking of mirror by active control

Experimental demonstration on thermal noise

Experimental demonstration on thermal noise

Quantum locking of mirror

Active control in the quantum regime

• Quantum noise in the measurement

$$\delta \varphi^{out} \approx \delta \varphi^{in} + \frac{\mathcal{F}}{\lambda} \left(\delta \mathbf{x}_m - \delta \mathbf{x}_r \right)$$

• Radiation pressure on the reference mirror $\delta x_r \propto \delta P^{in}$

Interferometer sensitivity

Measurement of mirror motion

$$\delta \varphi^{out} \approx \delta \varphi^{in} + \frac{\mathcal{F}}{\lambda} \left(\delta \mathbf{x}_m - \delta \mathbf{x}_r \right)$$

Measurement of δx_m limited by $\delta \phi^{in}$ and δx_r

Control with an infinite gain

$$\delta \varphi^{out} \approx \delta \varphi^{in} + \frac{\mathcal{F}}{\lambda} (\delta x_m - \delta x_r) \rightarrow \mathbf{0}$$

- Mirror is locked to the reference mirror
- Transfer of quantum noises

Control with an optimal gain

- Reduction of radiation pressure noise
- Sensitivity preserved at high frequency

QND measurement of mirror motion

Intensity reflected by a detuned cavity

$$\delta x_r \propto \delta P^{in} \rightarrow \delta P^{out} \approx \delta \varphi^{in} + \frac{\mathcal{F}}{\lambda} \left(\delta x_m - f_{\Delta,\Omega} \, \delta x_r \right)$$

For a properly chosen detuning, $f_{\Delta,\Omega} = 0$

Sensitivity of QND measurement

Measurement of δx_m only limited by $\delta \varphi^{in}$

Locking with QND measurement

Complete suppression of radiation pressure noise

Effect of losses

1% loss in control cavity

- Loss in interferometer: no impact on quantum locking
- Loss in detection: for 1% loss, sensitivity still increased by 100

Conclusion

- Active control techniques reduce quantum noise over a wide bandwidth
- Compatible with existing designs

• Decouple quantum optics constraints from interferometer characteristics Insensitive to losses in the interferometer

Phys. Rev. Lett. 90, 083601 (2003) - Europhys. Lett. 63, 226 (2003)

Characterization of internal modes

Determination of resonance frequencies, quality factors, masses, spatial profiles of internal acoustic modes