

Recent LIGO I simulation results

Hiro Yamamoto / Caltech - LIGO Lab

• As-built LIGO I performance and the path to it

• FFT run with as-built HR phase map

- » Contrast defect
- » Shot noise limited sensitivity
- » R.Dodda(SLU), B.Bhawal, H.Yamamoto, B.Kells, E.D'Ambrosio

• SimLIGO

- » Status
- » Noise hunting
- » M.Evans, H.Yamamoto, X.Xu (Caltech)
- Radiation pressure effects
 - » Simple FP stability
 - » Effects on LIGO I COC
 - » X.Xu, H.Yamamoto, J.Agresti (U.Pisa)

LIGO FFT run with as-built HR phase map effect of the aberration of test mass surfaces

http://www.ligo.caltech.edu/~gari/COCAsBuilt.htm

FFT analysis technical details

• FFT program

- » Developed by B.Bochner of MIT (1998 PhD)
- » Static LIGO field simulation which can include details of optics, including the mirror phase map, reflection and transmission

Measured data

- » Central region (15cm diameter, 0.2668x0.3114mm)
- » Extrapolate to full mirror (24cm diameter, 2.73x2.73mm)
 - Systematic uncertainty of this extrapolation $\sim 5\%$

• Tilt removal

- » FFT has a simple length control, but no alignment control
- » Phase map is modified to remove "tile" seen by a gaussian field.

FFT run result

recycling gain and contrast defect

	LHO4k	LHO2k	LLO4k
Symmetric	47	44	46
(ROCx = ROCy)	5.5e-7	3.6e-7	1.3e-7
As-Built ROC	47	44	46
	3.7e-5	8.5e-6	1.5e-7
As-Built ROC	43	41	42
w/ phase map	1.6e-4	1.7e-4	1.2e-4 ?
Data	6e-4		3e-5

The HR loss (I.e. "base loss") values used for these simulations are not at all consistent with what we know about the fabricated mirror surface smoothness (micro-roughness). This is the main problem for prediction of advanced LIGO performance. (Bill Kells)

LIGO-G030417-01-E

LSC August 21, 2003, Hannover

FFT result

shot noise limited sensitivity : Is this real ?

Fig.3.3 in B.Bachner's thesis

LLO : 2003 SURF calculation LHO4k and LHO2k are same

LSC August 21, 2003, Hannover

SimLIGO status

• SimLIGO

- » Realistic LIGO I simulation
- » LSC / ASC / DSC / major noise sources / Optical Lever included
- » thermal lensing simulated good near hot state
- » radiation pressure included
- Stones in the Road : Matt Evans talk on June 16, G030419-00-E
 - » things to watch out for, and some potentially useful tools, as we work toward a better LIGO1 detector

SimLIGO application

Robust lock acquisition - from cold to hot

- » beam profile (original one used scalar model)
- » thermal lensing effect
- » signal reliability mode matching not necessarily good
- » 4k Schupp asymmetry problem detected
- Robust alignment control in a realistic condition
 - » ASC is a problem of linear system, but
 - noisy and gain varying system
 - » SimLIGO can provide qualitatively similar nice play ground
 - » Robust algorithm with reliable signal

SimLIGO Noise Hunting

Radiation pressure

- Notes by D.Sigg and B.Kells about radiation pressure
- End to End model with radiation pressure
 - » no mathematics or no approximation
 - » yaw pitch length dof
 - » field dynamics included
 - » implication of stability instability
 - » role of control systems
- Alignment control makes system more stable
- Even for LIGO I COC, the radiation pressure will affect the control design.

Radiation pressure (not so) simple FP YAW motion

$$\ddot{\phi} = -\omega_0^2 \cdot (\phi - \phi_{sus}) + B \cdot \phi \cdot F_{RP} + C \cdot \dot{\phi}$$

- LIGO I 4k arm FP cavity
- Only yaw dof is active (torsion pendulum, a.la.Danniel)
- Local dumping by small Q
- Only ETM moves by radiation pressure and ASC
- Reflected signal is used to control yaw
- ETM suspension point moves as 1e-7 rad / (s+2 π)²

FP with radiation pressure Stable and unstable examples

YAW motion : torsion pendulum + optical spring, no ISC

Radiation Pressure in LIGO I

analysis using SimLIGO with full ASC/LSC

	Radiation pressure effect included	No radiation pressure effect
Full Alignment control	lock stable	lock stable
Partial alignment control	unstable	lock stable

* The difference between Full Alignment Control and Partial is that in Full, the beam axis is fixed at the mechanical center of the ETMs. In other words, Full: QPDx - QPDy = 0 and QPDx + QPDy = 0Partial: QPDx - QPDy = 0 but QPDx + QPDy is not constrained to be 0.

LIGO-G030417-01-E

LIGO Radiation Pressure on the Pitch dof ASC design is sensitive to rad.press.

Current SimLIGO ASC design does not take rad.press. into account

LIGO-G030417-01-E

LSC August 21, 2003, Hannover

How to address radiation pressure issue

• Danniel

- » Some of the results observed are not the same as actual LIGO
- » Needs to make it more realistic and it could provide useful input for the ASC design

• Missing piece - simulation and real LIGO ASC

- » Transfer function of pendulum response with optical spring
- » Run simulation of 6 suspended optics mutually connected by optical springs with length control on
- Radiation pressure in SimLIGO
 - » ASC design with radiation pressure activated
- Full LIGO simulation with realistic ASC/LSC and radiation pressure