Plans for optical coatings research

Gregory Harry Helena Armandula

20 August 2003 LSC Meeting Hannover Germany

Coating Plan

- Phase I Research and Development
 Find coating that achieves sensitivity while preserving optical, mechanical, and thermal specifications
- Phase II Production of Advanced LIGO optics
- Request for Proposal sent out June 2003
- Many international coating vendors responded
 Submitted own plan for R&D
- LIGO/LSC chose two vendors for Phase I
- LIGO/LSC will downselect to one (two?) for Phase II

Vendors chosen for Phase I

- CSIRO Sydney Australia
 - R&D based national laboratory
 - Currently working with LIGO on polishing
 - Individuals experienced in coatings
- SMA/Virgo Lyon France
 - Research oriented lab on University campus
 - Worked with LIGO on first round of coating experiments
 - Did the coatings for Virgo installed optics
 - Very experienced with coatings and coating research

LIGO

Phase I Research and Development

- Baseline coating Al₂O₃/Ta₂O₅
- Dopants
 - Target alloy of material and dopant
 - Target overcoated at various densities
 - Thermal diffusion from gas
- New materials
 - Hafnia HfO₂
 - Zirconia ZrO₂
 - Titania TiO₂
- Annealing
 - Temperatures up to ~ 600 C
 - Different atmospheres
- Adjustment of coating process parameters
- Change thickness of layers to de-emphasize lossy materials

Measurements

Coatings need to be characterized for all relevant parameters

- Mechanical loss ringdown Q experiments (MIT, Glasgow, Stanford, and Hobart and William Smith)
- Optical loss- absorption measurements (Stanford)
- Young's modulus acoustic reflection experiment (Stanford)
- Thermal expansion optical lensing experiment (Caltech, Stanford)
- Direct thermal noise measurement (Caltech, Hongo)
 Interferometers to measure thermal noise in short cavities
 Two different spot sizes (~50μm at Hongo, 160 μm at TNI)

Schedule

- Select coating vendors for Phase I August 2003
- Resume coating research (when contracts are in place)
 Fall 2003
- · Pick candidate advanced LIGO coating August 2004
- Final round of experiments Fall 2004
- Select coating vendor for Phase II Winter 2005
- Coat LASTI mirrors Winter 2005
- Begin coating Advanced LIGO mirrors Summer 2005
- Final coated optic Summer 2007

Outstanding Issues

- More correlation studies of loss with stress in coatings
- Study loss closer to advanced LIGO band
- Formula for coating Brownian thermal noise in finite sized mirrors
- New version of BENCH to include coating thermoelastic noise and more complete Brownian formula
- More collaboration with material and thin film scientists
- Direct observation of coating thermoelastic noise
- Thermal lensing experiments with advanced LIGO coating

LIGO

Advanced LIGO sensitivity vs coating loss angle

Advanced LIGO sensitivity vs coating Young's Modulus

