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• 4 cascaded mass-spring layers support 
integral down-tube/ optics table

• novel internally-damped coil springs 
bring Q’s of normal modes down to 
≈10–30. 

LIGO-1 Seismic isolation Stack
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• Stack isolates very well 
at high frequencies, 
meeting requirements.

• But, there are several 
troublesome resonances 
in the 1–12 Hz band that 
affect the interferometer 
when excited by ground 
noise.

Stack performance
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Ground noise studies.
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Louisiana ground noise • Timber harvesting adds 
noise in 1–3 Hz band

• Storms and waves in the 
Gulf of Mexico add noise in 
sub-Hz bands.

• Trucks, cars and trains...
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Statistics of band-limited rms 
velocities over 613 days
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Long-term ground 
noise trends

• 600+ day study of band-
limited RMS of 
seismometer signals at 
both sites.

• no long-term trend is 
evident.

• large excursions seen in 
high frequencies due to 
human activity

• large seasonal excursions 
seen in microseism due 
to large-scale weather.
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• Quantities listed are for the greatest arm length peak!to!peak excursion, 
and for the differential rms arm length deviation.  

• Displacement integrated down to 30 mHz, acceleration up to 16 Hz.

Torture test: 1500 s segments during ‘interesting’ times.

data file Displacement Velocity Acceleration

Enormous 
µseism

63 µm p-p 35 µm/s p-p 180 µm/s2 p-p

11 µm rms 4.8 µm/s rms 17 µm/s2 rms

Day Train
13 µm p!p 13 µm/s p!p 150 µm/s2 p!p

1.7 µm rms 1.6 µm/s rms 17 µm/s2 rms

Borderline 
day

30 µm p!p 18 µm/s p!p 150 µm/s2 p!p

4.6 µm rms 2.5 µm/s rms 17 µm/s2 rms
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Active noise reduction
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+ −

feedback
controller

platform &
pier dynamics

d

geophone
measurement

platform
motion

global feed-forward
and tidal correction

PZT
actuation

GS-13
sensors

SISO controller, East and West

• Feedback to piezoelectric 180 µm range 
external actuator from local geophones 
placed on test mass chamber crossbeams.

• Goal is to reduce beam-direction 
disturbance to stack in the 0.6–3 Hz band.

PEPI: Piezoelectric pre-isolation



11 (Hz)
0.5 1 1.5 2 2.5

)
1/

2
m

/s
/H

z
µ (

0

2

4

6

8

10 Equiv. Differential Arm Velocity
RMS integral

w/o PEPI

Frequency (Hz)
10-1 1 10

)
1/

2
M

ag
ni

tu
de

 (m
/H

z

10
-9

10-8

10-7

10-6

10-5

L1:SEI-PEPIX_N_GS13

L1:SEI-PEPIX_S_GS13

L1:SEI-PEPIX_N_GS13(REF6)

L1:SEI-PEPIX_S_GS13(REF2)

Equivalent velocity
of Diff Arm length

Displacement noise
reduced at crossbeam

PEPI
Performance



12

Microseism Feedforward
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• FF reduction extended 
up to 0.35 Hz

• PEPI removes excess 
FF noise down to 
about 0.65 Hz

• Bad zone reduced 
from 0.2–0.8 to 
0.35–0.65 Hz.

• RMS motion reduced 
by factor of 3.

Combined PEPI/FF performance.

0.2 0.4 0.6 0.8 1 1.2 1.4

1

2

3

4

5

6

7

8

Frequency (Hz)

ty
pi

ca
l c

on
tro

l c
oi

l c
ur

re
nt

 (m
A/

√H
z)

with PEPI & FF
without



14

Seismic isolation for Advanced LIGO

Seismic isolation 
takes place in three 
places:

• Test mass 
suspension.

• 2-stage in-vacuum 
active (inertial-
feedback) 
platform.

• External pre-
isolation stage.

C. Hardham
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Quad Pendulum

• cascade of 4 pendulum 
stages

• isolates as 1/f 8 above 
pendulum resonances

• 10-14 mrms after global 

control

•

C. Hardham

10−19 m/
√

Hz at 10 Hz.



  

Combine with isolation system residual noise level 

of 2x10-13 m/Ö Hz to achieve target sensitivity

Green: undamped 
Blue: damped

Longitudinal isolation          

at 10 Hz: 3x10-7

Quadruple Pendulum: 
Isolation Prediction
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2 Stage active platform

• Local feedback in 6 
DOFs per stage to 
(inertial) seismometer 
and (relative) 
displacement sensors

• Also, local sensor 
correction based on 
local seismometers.

• Should reduce the noise 
to:

C. Hardham

10−11 m/
√

Hz at 1 Hz.

2 × 10−13 m/
√

Hz at 10 Hz.
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Pre-Isolator Stage

• Outside-of-vacuum 
stage, actuated by 
hydraulic bridge 
devices: 1 mm range 
and 6 DOFs

• Noise reduction 
largely due to local 
feedforward and 
sensor correction.

• Microseism through 
several hertz noise 
reduced by approx 10.

C. Hardham
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• Design requirements are 
based on Adv LIGO ‘system’ 
design, to avoid seismic noise’s 
ever adding to detector noise 
floor.

• two-stage active platform 
could meet the requirements 
at LHO and the quiet times at 
LLO.

• The external hydraulic stage 
will bring LLO into 
compliance as well.

• Seismic team spending most 
of its time on the retrofit at 
LLO; BTL will talk on this.

Adv. LIGO seismic isolation requirements.
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Sensor blending
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Cap. Displacement

• Servo error signal derived from 
‘Super-sensor,’ a blended 
combination of displacement 
and inertial sensors, 
constructed for each controlled 
DOF, to minimize noise and 
artifacts.

• At very low frequencies locally 
follow displacement sensors, 
corrected by ground noise 
measurements and global 
interferometer signals. 

• Mid frequency noise reduced by 
sensor correction and local 
inertial feedback.

• High frequencies get local 
inertial feedback.
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Noise/ isolation model results for two-stage active platform
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Performance estimates from dynamic model
displacement pitch yaw

ASD at 10 Hz 2 × 10−13 m/
√

Hz 4 × 10−13 rad/
√

Hz 4 × 10−13 rad/
√

Hz
RMS deviation 1 × 10−11 m 3 × 10−11 rad 2 × 10−11 rad
RMS velocity 1 × 10−10 m/s
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• 6 DOF dynamic model used to 
study our sensitivity to the tilt-
horizontal coupling inherent in 
low-frequency feedback to inertial 
sensors.

• A slab tilt step function causes 
highly-damped horizontal 
excursion.

• 5 tons of equipment moved across 
VEA slab causes slow 0.5 mm 
excursion.

•  Thanks to the LIGO-1 slab 
designers!

•                         expected ground 
tilt causes insignificant horizontal 
motions at microseism.

Tilt-horizontal study
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Proof-of-concept test of active platform
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• Two stages give 2 1/2 orders of magnitude noise reduction at 10 Hz.

• Designed to test sub-hertz noise reduction and robust two-stage 
(12 DOF) controller.
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Sensor correction noise reduction on stiff platform in 3-D
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• Single-stage horiz. sensor 
correction gives 1 1/2 orders of 
magnitude x isolation at 1 Hz.

• even better vertically.
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Technology Demonstrator at Stanford’s ETF

• Intended to test Adv LIGO SEI 
in-vacuum platform technology

• Dynamic tests underway, isolation 
servo design underway.

• Uses the same topology, 
instrumentation and materials as 
we expect to use in Adv LIGO’s 
HAM chamber, except:

- Payload about half.

- actuator materials and cleaning 
appropriate for HV, not UHV.

- Fits in slightly smaller ETF chamber.

- Smaller area (higher noise) 
displacement sensors. 
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Technology Demonstrator
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Technology Demonstrator

STS-2 Seismometer

GS-13 GeophonesCapacitive
displ. sensors.
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Reduced mechanical tilt-horizontal coupling
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Reduced mechanical tilt-horizontal coupling
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Increased structural resonance frequencies
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Tech. Demo. Characterization

• All sensors and 
actuators worked 
after installation.

• Transfer functions 
from all 12 
actuators to all 30 
sensors measured 
0.05–100 Hz, in air, 
without vac. cover.

• Next steps: servo 
controller 
development, 
vacuum work.

• Displacement 
sensors measure 

10-1 100 101

10-2

100

102

m
ag

 (V
/V

)

Collocated Horizontal Transfer Functions, Stage 1 

Seismometer
Geophone
Displ. Sens.

10-1 100 101

10-2

100

102

m
ag

 (V
/V

)

Collocated Vertical Transfer Functions, Stage 1 

≈ 1.5 × 10−10 m/
√

Hz



30

• LASTI Prototype 2-stage platforms:

- Mechanical design should begin 9/’03;  LIGO contracting with 1 or 2 design/fab 
firms to produce the HAM and BSC platforms.  LIGO/LSC effort will be focussed 
on control systems.

- Sensor & actuator specification and electronics design in parallel with mech. design.

- Hardware ought to be ready by end of ’04.  Then follows commissioning, sys-id, 
controller design, and testing at LASTI.

• Adv LIGO SEI design reviews in 4/’05 (PDR) and 11/’05 (FDR), if 
things go well.

• Challenges, to be addressed during LASTI phase:

- ≈30 systems in LIGO, each with 12 DOFs, can’t easily be hand-tuned, and so sys-id 
and tuning of baseline controller should be automated.

- Control-room supervision of these servos needs to be easier to use than systems 
of similar complexity in LIGO-1.

Development schedule & challenges


