

- Thermal lensing
- Influence on the performance of the interferometer
- How to compensate its effects

Thermal lensing (TL)

ITM temp. distrib.

Optical absorption in the material

$$T_{ITM} = 300 K$$

Thermal lensing (TL)

ITM temp. distrib.

ITM power absorbed Substrate = 1W Optical absorption in the material

High power laser beam

Non-uniform heating of the optics

Thermal lensing (TL)

Optical absorption in the material

High power laser beam

Non-uniform heating of the optics

if T
$$\nearrow$$
 , n \nearrow $(\beta > 0)$

$$\Delta OPL(r) = \beta \int_0^L (T(r,z) - T(0,z))dz$$

$$\Delta OPL(r) = \beta \int_0^L (T(r,z) - T(0,z))dz$$

Equivalent to:

$$\Delta OPL(r) = \beta \int_0^{L+\Delta L(r)} (T(r,z) - T(0,z)) dz$$

$$\Delta OPL = \beta \int_0^L (T(w, z) - T(0, z)) dz$$

- Same TL magnitude for fused silica and sapphire
- Short TL time constant (< 1 minute)</p>

Test mass TL effects

- Test mass acts like a convergent lens (focal length ~ km)
- Non spherical lens ⇒ higher mode conversion (< 0.5 %)</p>
- Change the mirror radius of curvature (change in sagitta ~ nm)

Cavity TL effects

Gingin Test 3

$$g = 0.88$$

$$P_{circ} \sim 200 \text{ kW}$$

- Change the cavity modes
- Decrease in the circulating power
 - 3% for the carrier in the arm
 - 17% for the sidebands

Heating ring

- Due to the sapphire high thermal conductivity, the compensation is more difficult than for silica
 - More difficult for small beam radius

Heating ring

 Due to the sapphire high thermal conductivity, the compensation is more difficult than for silica

More difficult for small beam radius

ITM temp. distrib. T_{ITM} = 400 K P_{ring} = 60 W

Use of 2 heating rings ?

Not practical for Gingin on sapphire TM!

Compensation plate

Compensate the TL on an external silica plate

Heating ring

FS Plate

- Diameter same as the TM
- Thickness optimized (~ 10 mm)

Advantage:

TM remains intact

Drawback:

Object inside the cavity

For Gingin...

$$P_{ring} = 14 \text{ W}$$

$$P_{ring} = 14 \text{ W}$$

$$T_{plate} = 340 \text{ K}$$

For Gingin...

- No change in arm circulating power
- Restoration of the sideband gain

Experiments

Experiments required to validate the simulations

- 50 mm diameter plate
- Heating by conduction
- Using a Mach-Zender interferometer

First result: thermo-optic coefficient

Further work

The main issues remain: Quantification of the noise added by the plate

- Suspension requirement ?
- Influence of the AR coating?
- Control accuracy?

- Strong thermal lensing in AIGO
- Compensation plate essential
- Need more research

Regarding the thermal lensing:

Be alert not alarmed!

Special thanks to ACIGA and LIGO people