Simulation of the LISA Data Stream from Galactic White Dwarf Binaries

M. Benacquista D. Lunder J. DeGoes

Montana State University-Billings

NASA Cooperative Agreement NCC5-579

August 11, 2003

Amaldi 5, Tirrenia, Italy

1

LIGO-G030465-00-Z

Confusion-limited Background

- Galactic population of close white dwarf binaries will dominate LISA signal
- Below ~ 1 mHz signal will be isotropic and effectively gaussian with > 100 sources per bin for a 1-year observation
- Above ~ 5 mHz signal will be individually resolvable sources
- Simulate the transition region with 90,000 binaries to develop a tool for testing analysis techniques

Phenomenological Population Synthesis

- Assume uniform birthrate
- Assign binary type at birth according to Nelemans et al.
- Assign component masses according to Iben & Tutukov
- Assign orbital period at birth according to mass of secondary
- Evolve each binary to present and retain if orbital period is < 2000 s and binary has not merged

Mass Distributions

Amaldi 5, Tirrenia, Italy

Orbital Period Distribution

Generating the Signal

$$h(t) = \frac{\sqrt{3}}{2} A(t) \cos[2\pi f_0 t + \varphi_p(t) + \varphi_D(t) + \varphi_0]$$

$$A(t) = \sqrt{\left(A_+ F^+(t)\right)^2 + \left(A_\times F^\times(t)\right)^2}$$

$$\varphi_p(t) = \tan^{-1}\left(\left(-A_\times F^\times(t)\right)/A_+ F^+(t)\right)$$

$$\varphi_D(t) = \left(2\pi R_{\oplus} f_0/c\right) \sin \theta_s \cos[\phi_{\oplus}(t) - \phi_s]$$

Generate time series data with a sampling rate of 1 data point per second. One year of data $(3.2 \times 10^7 \text{ points})$.

Full Spectrum

August 11, 2003

Amaldi 5, Tirrenia, Italy

Spectrum around 1.3 mHz

August 11, 2003

Amaldi 5, Tirrenia, Italy

Spectrum around 4.3 mHz

August 11, 2003

Amaldi 5, Tirrenia, Italy

August 11, 2003

Amaidi 5, Tirrenia, Italy

 $1\,1$

NGC 104 (47 Tuc)

- Large, nearby globular cluster
- Dense core
- Binaries formed through dynamical encounters
- Lots of *Chandra* sources
- Large number of millisecond pulsars

NGC 5139 (ω Cen)

- Largest galactic globular cluster
- Open core
- Binaries are primordial
- Has measurable rotation
- May be core of a dwarf spheroidal galaxy

NGC 6397

- Nearest galactic globular cluster
- Probably core collapsed
- ~ 20 X-ray sources
- Evidence of mass segregation
- Binaries formed through dynamical encounters

NGC 6752

- Nearby galactic globular cluster
- Core collapsed
- ~ 20 X-ray sources
- 15%-38% binary fraction in the core
- 5 millisecond pulsars
- Binaries formed through dynamical encounters

NGC 7078 (M 15)

- Distant galactic globular cluster
- May harbor an intermediate mass black hole (Gerssen et al.)
- May harbor a large number of compact objects (Baumgardt et al.)

Globular Cluster and Disk

Future Work

- Include binaries with orbital period above 2000 s
- Use the LISA Simulator (Cornish & Rubbo) to generate signal
- Develop realistic globular cluster binary populations
- Test data analysis techniques for identifying globular cluster binaries

Conclusions

- We have simulated the LISA data stream for a population of 90,000 close white dwarf binaries
- Data stream can be added to a specific choice for instrument noise to investigate data extraction for different noise levels.
- Simulation uses long wavelength approximation, so higher frequency sources may need to be modified.
- Data stream is available on CD.