
A Computational test facility for distributed analysis of gravitational wave signals
P. Amico, L. Bosi, C. Cattuto, L. Gammaitoni, F. Travasso, M.Punturo, H. Vocca

Istituto Nazionale di Fisica Nucleare – Sezione di Perugia, Italy
Virgo Experiment

The Problem
The gravitational signal coming from a system of two coalescing NS stars is the best candidate 
for a detection in a terrestrial GW interferometric detector. Assuming that the signal can be 
described by its 2nd order PN approximation, it is possible to implement a Wiener (or matched) 
filtering strategy for the detection. 
The good seismic attenuation in the Virgo detector allows to take in account the low frequency 
part [1] of the signal coming from such as stellar system, relatively far from  the coalescence.
This possibility improves the detection probability in Virgo, but dramatically increases the 
computational needs. In fact, to apply the Wiener detection strategy, with only a 3% of SNR 
loss, it is necessary to build a large grid of templates (more than 45000) where, for the lightest 
pairs of stars, there are templates of  more than 100 seconds long [2][3].
Since matching against the 45000 templates must be performed in time with respect to the data 
stream coming from the interferometer, a considerable computational power is needed . Hence, 
a distributed computing philosophy, based on a beowulf (http://www.beowulf.org) cluster, was 
adopted.

References
• M.Punturo, “The VIRGO sensitivity curve”, VIR-NOT-PER-1390-51, Virgo internal 

note (2001)
• P. Canitrot et al., “Computational costs for coalescing binaries detection in VIRGO 

using matched filters”, VIR-NOT-PIS-1390-149, Virgo internal note (2000).
• P. Amico et al., Computer Physics Communications 153 (2003), 179-189

Hardware and Software platform
A first facility was realized in Perugia in the past using a cluster of dual Pentium III 
processor. The system consists of ten 866Hz rack mounted dual processor machines that 
operate as computational nodes, plus two machines (Atlon and P4 based) that operate as 
fileservers. The nodes have a fast-Ethernet interconnect.
An upgraded version of this machine has been recently configured at the Virgo site, 
deploying DUAL-Xeon (1.7 GHz) nodes with a Gigabit Ethernet interconnect.

The environment in the new facility is 
similar to the Perugia scheme:
•GNU/Linux OS (RedHat-based)
•GNU compiler toolchain (gcc-3.2)
•LAM-MPI 6.5.9
•FFTW 2.1.3 - 3.0
•Siglib 6, Fr v6r07, Frv v4r02,…

• Root filesystem over NFS, read-only  mounted
. root filesystem based on a customized RedHat distribution
. root filesystem exported and managed using the standard RedHat  tools

• Single nodes image
. Single node image stored on the server (farmn9)
. Any change of the images is automaticall visible to the cluster nodes

• NFS-shared  /beowulf   /virgoApp  /virgoDev filesystems 
. /beowulf contains the system libraries for the Beowulf, like lam-mpi, fftw3
. /virgoApp , /virgoDev hold the standard Virgo software distribution

• NIS authentication with VIRGO standard username/passwd

The matching engine
The detection software environment (Merlino) is composed of four main processes 
communicating through MPI primitives, in a master-slave configuration:
•Controller: one process for the whole cluster (currently linked in the group manager)
•Loader: one process for the whole cluster
•Group Manager: one for each active master in the cluster
•Filter Executor: one or more processes for each GM

LOADER

GM

Filter Exec 1

Filter Exec 2

Filter Exec 3

Filter Exec ….

Filters GEN …

Filters GEN  1

MPIMPI

User interface
ØMerlino.cgf
ØLam environment
ØGUI (to develop)

Low pass filter

High pass filter

down-sampling

D whitening

Fr format load

LOADER

FFT
Other func..

MPI

TXT Events mod

Load Balancer

Generator ctrl

Filt. Exec. ctrl

Fr Events mod

GM

Other macro

Macro 
scheduler OP

P
lu

g
-in

s

P
lu

g
-in

s

Detections

Matched filters

Filters Executor N

Macro OP:
Filters apply

Macro OP:
Others…

Macro OP:
Init 

Init

Other…

Filters E
xecutor 3

F
ilt

er
s 

E
xe

cu
to

r 
1

MPI

P
lu

g
-in

s

Performances of the system
All the templates of the grid are kept (in the frequency-domain representation) in memory after the 
generation. To evaluate the difference in performance of the old and new clusters it is necessary to 
discriminate the different contributions to the CPU load. The matched filter can be seen as composed of 
three main steps:

•Array product
•Inverse real Fourier transform
•Detection of the largest peak in an array of data

In the following table, the total computation time and the fractional contributions of the different sub-tasks 
are reported:

4.0%88.0%8.0%106Xeon (FFTW-
GEL)

1.1%94.8%4.1%181Xeon

11.3%75.3%13.4%238PIII

Max. 
detection

rFFTArray 
product

Total 
time

(ms)

The anomalous weight of the rFFT algorithm in the Xeon architecture is due to the lack of specific Xeon
optimizations in the FFTW 2.1.3 code. With the P4 specific version of that library the CPU load sharing 
between the different part of the matching filter is recuperated.
Dual CPU nodes, while affording higher density, can have memory bottleneck issues:

Concurrent memory access by the 
two CPUs places high demands on 
the memory bus, effectively starving 
the older Pentium-III architecture. 
Xeon-based nodes, on the contrary, 
are able to gracefully handle the 
load.

The number of matching filters that a Xeon machine is able to compute vs the dimension of the data buffer is 
reported in these figures. Using 100s templates and taking in account the buffer grown due to the zero-padding 
technique, the expected dimension of the buffer (2kHz sampling rate) is 4MB (corresponding to 256s). Then 
the measured performances are about 5 templates/second per CPU (10 using FFTW-3.0)

If the system should be used in a “in time” philosophy,  the computational window to perform all our 45000 
filters, is about 150s (256s of each data buffer minus 100s of the overlap between buffers); in this time 
interval each CPU is able to evaluate 825 templates (in single CPU configuration) or 726 templates (in 
double CPU configuration) using the older version of FFTW. To keep in memory such number of templates 
each CPU should have available 5GB of memory. Despite the smaller amount of memory available in the 
small scale facility, the system is able to reach the plateau of 5 templates per second expected using the 
FTTW 2.1.3:

Hence, in Virgo, to perform an in time analysis of the coalescing binaries signal, with PN2 approximation of 
the templates, neglecting any spin effect, starting from about 30Hz, a beowulf cluster of about 60 P4 
machines is required.

100 1000 10000
-5

0

5

10

15

20

25

30

35

 

 

P
er

fo
rm

an
ce

 lo
ss

 (
%

)

data length [kBytes]

 Pentium 3
 Xeon

0 20 40 60 80 100 120
2.5

3.0

3.5

4.0

4.5

5.0

5.5

6.0

Xeon CPU

 

 

Te
m

pl
at

es
/s

ec
on

d

# of templates per CPU

10 100 1000 10000
-25

-20

-15

-10

-5

0

5

10

[(# templates Dual Xeon) - (# templates Single Xeon)] / (# templates Single Xeon)

 

 

P
er

fo
rm

an
ce

 v
ar

ia
tio

n 
(%

)

Data length [kB]

10 100 1000 10000
100

10
1

10
2

103

104

Xeon CPU  

 

Pe
rfo

rm
an

ce
 [F

ilt
er

s/
s]

data length [kB]

 Standard FFTW libraries
 P4FFTW-3.0 libraries

LIGO-G030469-00-Z


