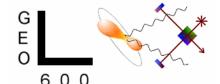


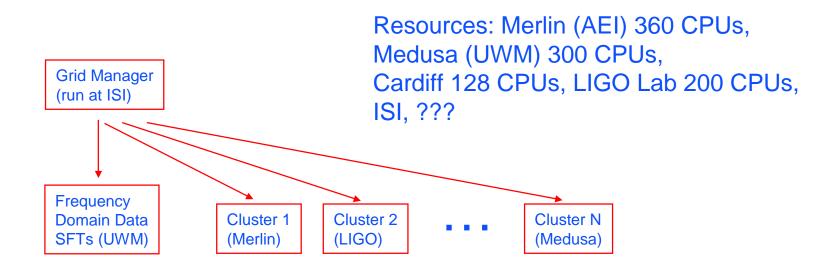
Update on November 2003 grid-distributed wide-area CW search

Bruce Allen, Marialessandra Papa, Scott Koranda, Albert Lazzarini

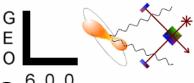


Why grid-enable Pulsar search?

- The existing validated algorithms are single-pass coherent methods, not hierarchical.
- To search over a broad frequency band, and even a limited area of the sky, requires enormous compute resources
- Within the LSC, we currently have ~1500 CPUs that could be used – but of course they have other duties as well
- A grid-enabled search code would allow us to leverage existing grid platforms and testbeds.


Why SC 2003?

- The GriPhyN and iVDGL Collaborations are LIGO's pathway into the grid computing community
- The computer scientists in these collaborations work hard to demonstrate their work in the annual SuperComputing N meetings (next is November 2003 in Denver)
- Past demos for SC2001 and SC2002 have not led directly to scientific results/papers. We'd like SC2003 to change this.


How will it work?

The grid manager has a list of search parameters (f, fdot, sky positions). It sends the relevant part of the frequency-domain data to different clusters, along with a stand-alone executable, and runs these on the cluster. The executables that run on the clusters return lists of (up to, say, 10) parameter sets and the corresponding values of the F statistic. They also return some simple statistics on the F-statistic distribution that enable one to quickly determine if the data has noise which is problematic.

The manager is "intelligent" and knows what data exists already at what clusters.

What search will we do?

- Wide parameter space search
- Wide band
- Long observation time (all of S2) so high resolution in f, fdot, and sky position
- Deep search of selected interesting areas, for example
 - » galactic core
 - » first spiral arm
 - » Gould Belt (see Greg Mendell's talk). Claims exist that @100-200Hz there might be detectable S2 sources. Gould belt is 50-400 pc away.
 - » Unidentified X-ray sources
 - » SN remnants
 - » globular clusters
- Pulgroup is working on choosing parameter space but this has little impact on the setup of the software/grid infrastructure.