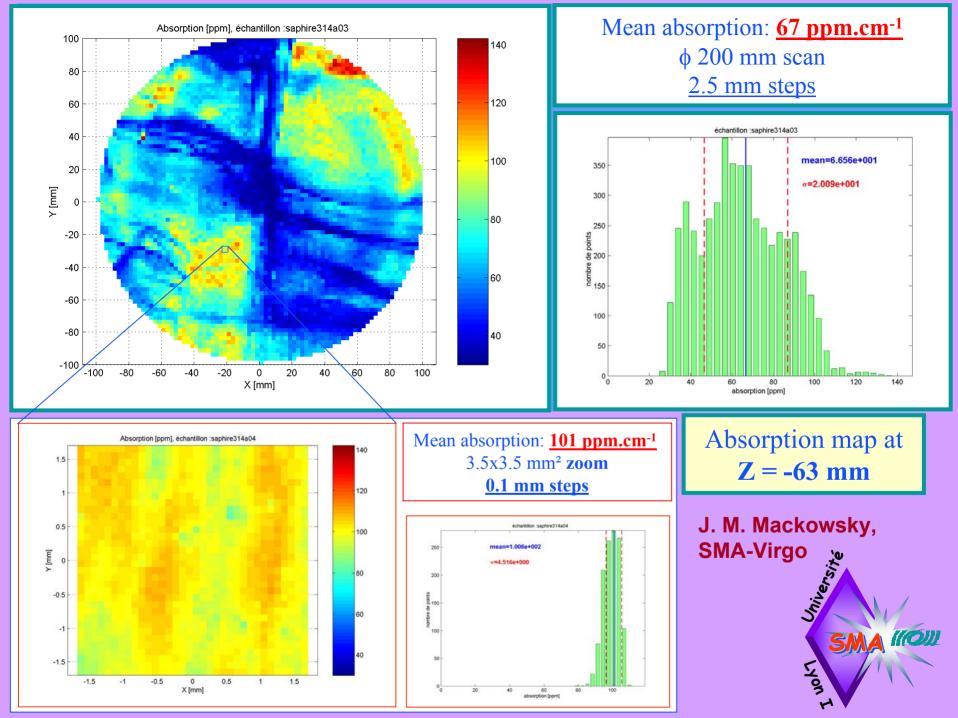
LIGO

Main Efforts of the Core Optics WG

Sapphire test mass R&D

- » Focus has moved to characteristics of AdLIGO-sized substrates
- » Beginning to understand asymptotic limits of performance ?


Fused silica test mass R&D

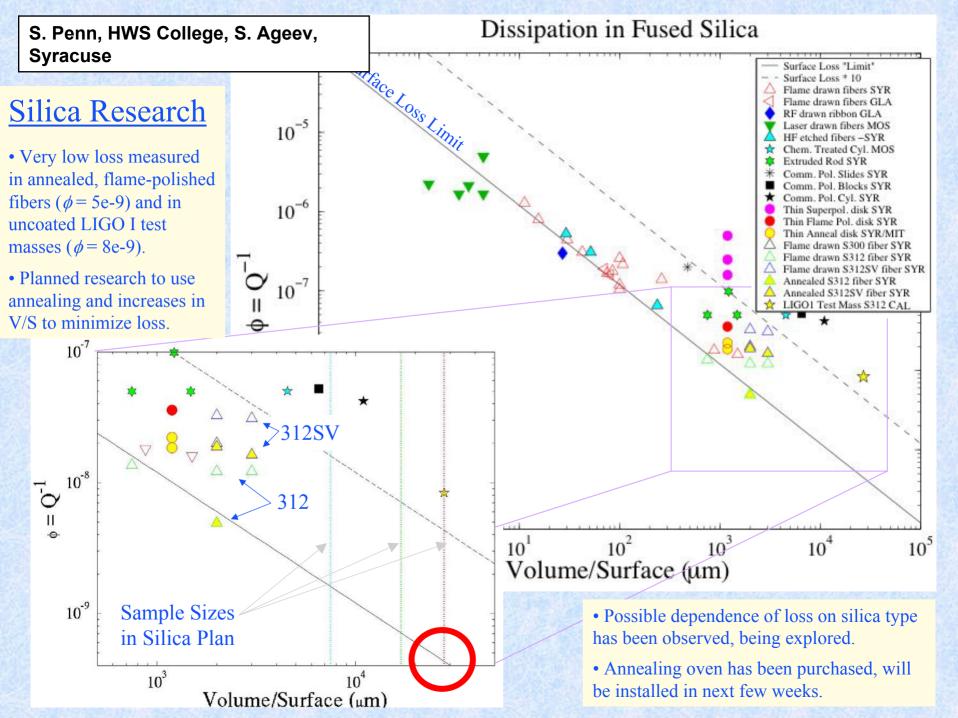
- » Interest has rekindled based on recent high Q results
- » Detailed R&D plan formulated for advancing FS to AdLIGO readiness

Coating R&D

- » Probably the most serious technical risk facing AdLIGO optics
 - Mechanical loss is high: if no improvement, sensitivity decreases by 30%
 - Low optical loss must be preserved...
 - Second round coating R&D program initiated

New Test Mass Down-select date – March-April 2004

LSC Meeting, Hannover, GE August 18-21

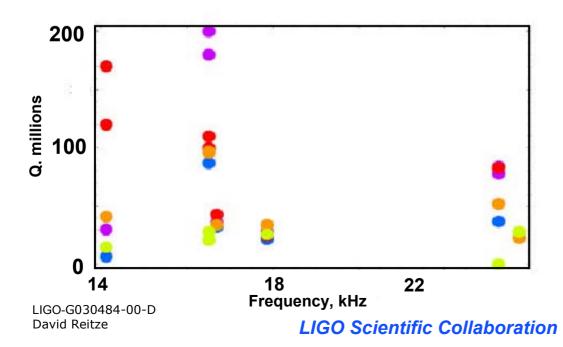

LIGO Identification of Trace Elements in Sapphire

S. McGuire (SUBR), G. Lamaze and E. Mackey (NIST)

 Instrumental Neutron Activation Analysis (INAA) to assess correlations between 1064 nm absorption and presence of impurity states

• No smoking gun...

Element	Low Loss	High Loss	SRM 1575a	Certified Value
Sc	0.06 ± 0.02 ppb	0.20 ± 0.04 ppb	10.8 ± 0.8 ppb	10.1 ± 0.3 ppb
Cr	9 ± 2 ppb	8 ± 1 ppb	0.36 ±0.03 ppm	0.3 - 0.5 ppm range
Fe*	≤1ppm	≤1 ppm	45 ± 2 ppm	46 ± 2 ppm
Co	≤1 ppb	1.2 ± 0.4 ppb	68 ± 3 ppb	61 ± 2 ppb
Zn	30 ± 3 ppb	40 ± 4 ppb	39 ± 2 ppm	38 ± 2 ppm
Sb	≤2 ppb	≤2 ppb	10 ± 3 ppb	not certified
La	7 ± 0.4 ppb	4 ± 0.4 ppb	53 ± 7 ppb	not certified


LSC Meeting, Hannover, GE August 18-21

Mechanical Loss in Large Substrates - Sapphire

• Qs in excess of 2x10⁸ !!!

- P. Willems and D. Busby, LIGO- T030087-00-R
- frequency dependence measured; Q decreases with increasing frequency
- FE model → good agreement with measured Qs, frequency dependence poor barrel polish contributes to loss

LIGO

Coating Mechanical Loss

- S. Vyatchanin , MSU; Peter Sneddon, U. Glasgow
- Both *thermoelastic loss*^{**} and *loss resulting from residual dissipation* are of significance for coating thermal noise (increasing the overall thermal noise level by a few 10s of percent).
- Analysis of SiO₂/Ta₂O₅, SiO₂/Al₂O₃ and Al₂O₃/Ta₂O₅ coatings suggests that Ta₂O₅ has greater residual loss than SiO₂ and Al₂O₃
 - SiO₂ and Al₂O₃ have frequency-dependent loss
- For a silica substrate:
 - a SiO₂/Ta₂O₅ coating has the lowest thermoelastic noise and the lowest total thermal noise, though is still dominated by the loss in the Ta₂O₅.

** V. Braginsky, et al., Phys. Lett. A 312 244

LIGO Scientific Collaboration

Coating Mechanical Loss (cont'd)

• For a sapphire substrate:

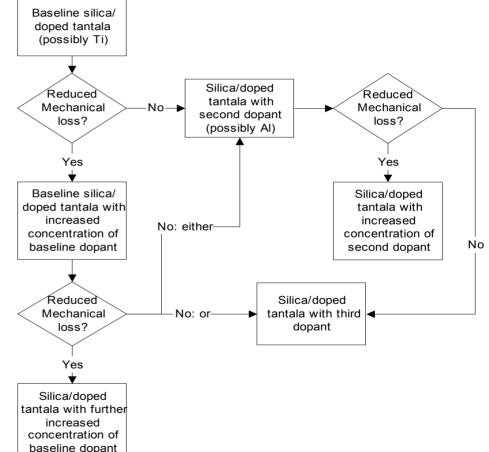
Peter Sneddon, U. Glasgow

• a SiO₂/Al₂O₃ coating has the lowest overall thermal noise. However, this can only be reduced by a factor of ~ 2 before the thermoelastic floor is reached.

• an Al_2O_3/Ta_2O_5 coating has a lower thermoelastic noise floor and could have a lower total thermal noise if the residual loss in the Ta_2O_5 can be reduced.

• Suggests the way forward is to reduce the loss of the Ta₂O₅, or find an alternate high-index material with a lower mechanical loss and similar thermoelastic properties. This should reduce the total coating thermal noise for both silica and sapphire mirrors.

LIGO

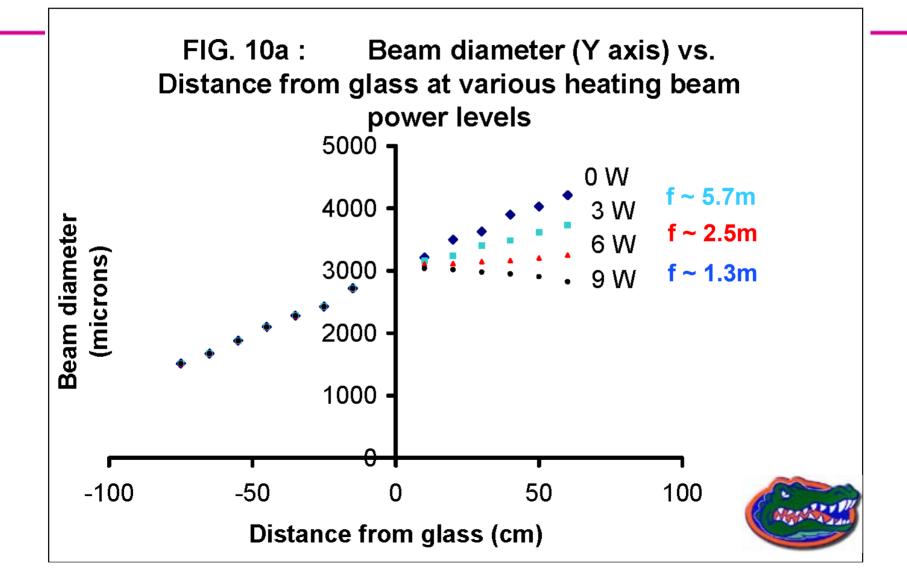

Coating Mechanical Loss

- G. Harry, et al., LIGO-C030187-00-R Advanced LIGO Coating
 - outlines research program for participant vendors
 - RFP sent to coating vendors
 - 5 companies responded positively
 - committee formed to evaluate proposals
 - met in early August

Development Plan

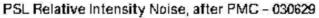
LIGO

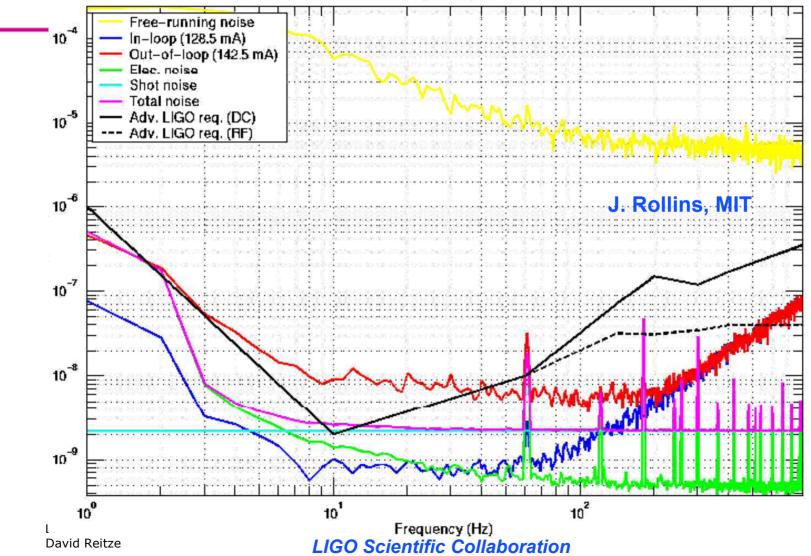
• CSIRO, SMA-Virgo selected for coating R&D contracts



LIGO-G030484-00-D David Reitze

LIGO Scientific Collaboration


LIGO



10

LIGO

Advanced LIGO Intensity Stabilization

Sapphire Test Mass Requirements Redux

Legend: $$ = 'good'	(V) = 'close' ? = 'jury still out'
Mass	40 kg
Physical dimension	31.4 cm x 13 cm
Optical homogeneity	< 10 nm rms 🔨 **
Microroughness	< 0.1 nm rms ()
Internal scatter	< 10 ppm/cm ?
Absorption	10 - 40 ppm/cm*
Thermal noise	Q > 2 x 10 ⁸
Birefringence	< 0.1 rad ?
Polish	< 0.9 nm rms 🚺

LIGO-G030484-00-D David Reitze

Fused Silica Requirements Redux

Mass	40 kg 🗸
Physical dimension	34 cm x 20 cm 🔨
Optical homogeneity	< 10 nm rms
Microroughness	< 0.1 nm rms
Internal scatter	< 10 ppm/cm?
Absorption	0.5 – 1.0 ppm/cm
Thermal noise	$Q > 1 \times 10^8$?
Birefringence	< 0.1 rad 🗸
Polish	< 1.2 nm rms