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Primary Cosmic Rays
& Energetic Solar Flare Particles

Due to the time dependence of the 
amount of charge accumulated on a 
test mass, get unwanted, coherent 

signals in LISA measurement 
bandwidth, due to Lorentz and 

Coulomb interactions.
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But test masses will be periodically discharged using UV light, so…
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Series of sinc functions in the acceleration spectrum, each centred on n/T, mainly concentrated in 
frequencies up to 1/τ on each side of n/T.  For T ~ 1 day & τ ~ 1 year, separation 1/T ~10-5 Hz, width 
of primary lobe, 2/τ ~6x10-8 Hz (cf f resolution ~3x10-8 Hz)

⇒

Acceleration spectral density (ms-2Hz-0.5) vs f (Hz)
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LISA accn noise limit
from f(t)+e(t)+d(t)
from f(t)
from e(t)
from d(t)

Magnitudes plotted at primary peaks of sinc functions

Unwanted signals 
>> noise @ low f!

Approaches to eliminate these signals
1.Decrease net charging rate via constant UV illumination

• Require precise balance between rates as need net~0.1 e/s if use 
this method alone to reduce signals to < accn noise limit!

• Will result in increased accn noise.
2.Choice of charging period, T

• Minimise individual signals & maximise the spacing between the 
primary spectral peaks by discharging as frequently as is feasible. 

• If can measure offsets and charging rate, may be possible to 
optimise T, so resultant signal minimised- depends on offsets, so 
cannot be ensured?

3.Choice of system parameters
• Large electrode-test mass gaps
• Large mass
• Minimise voltages & voltage differences

4.Minimise offsets
• Level to which geometrical offsets can be reduced is  limited by

e.g. machining accuracy &  test mass positioning accuracy.
• Voltage offsets in the system are unavoidable due to patch effects 

and work-function variations. The level to which these can be 
balanced will then determine the residual voltage offsets in the
system (W. Weber et al SPIE, 2002)
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5.Spectral analysis
• Expect, ultimately, signals will be removed via analysis
• Use e.g. pattern matching to extract signal
• Cross-correlate O/P from different test masses ? (limited by 

differences in mean charging rate)
• Cross-correlate O/P from different DoFs ? ( limited by 

sensitivity)

(as per Buchman et al, 95 )
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