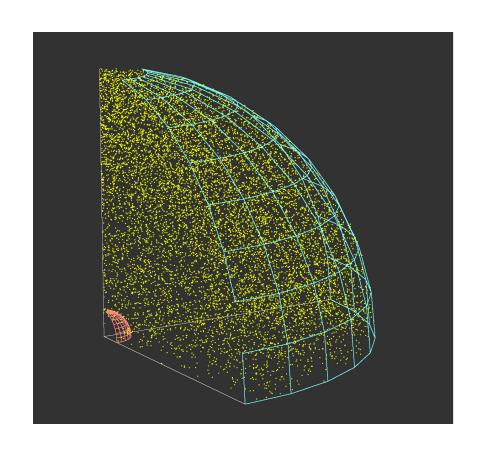


Advanced LIGO

Daniel Sigg, for the LIGO Scientific Collaboration TAUP, University of Washington September 8, 2003



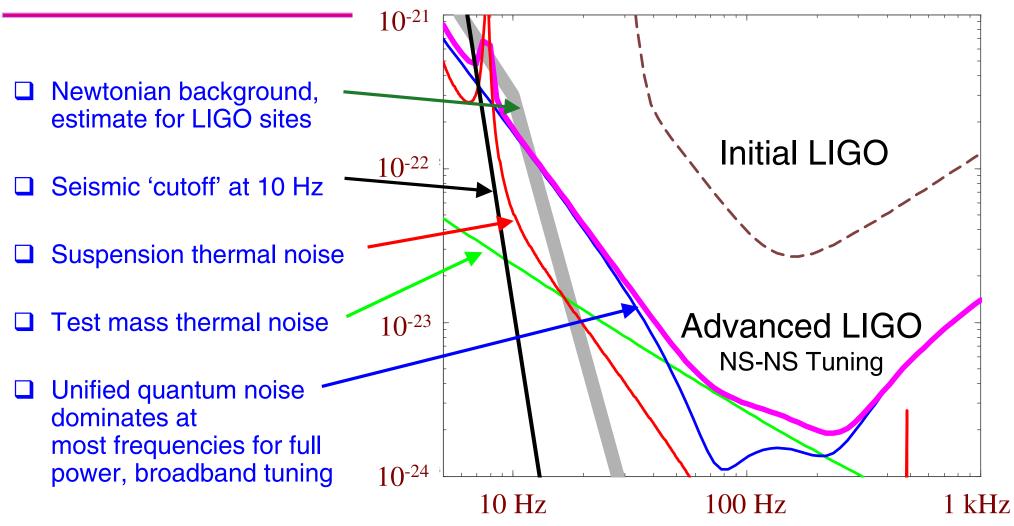
Advanced LIGO

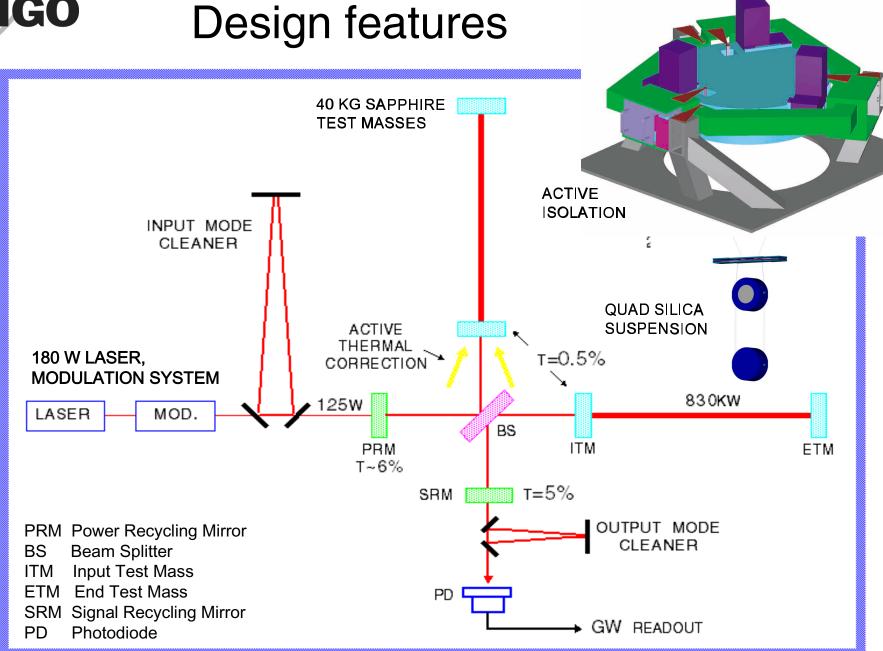
□ LIGO mission: detect gravitational waves and

initiate GW astronomy

- Next detector
 - Should have assured detectability of known sources
 - Should be at the limits of reasonable extrapolations of detector physics and technologies
 - Must be a realizable, practical, reliable instrument
 - Should come into existence neither too early nor too late

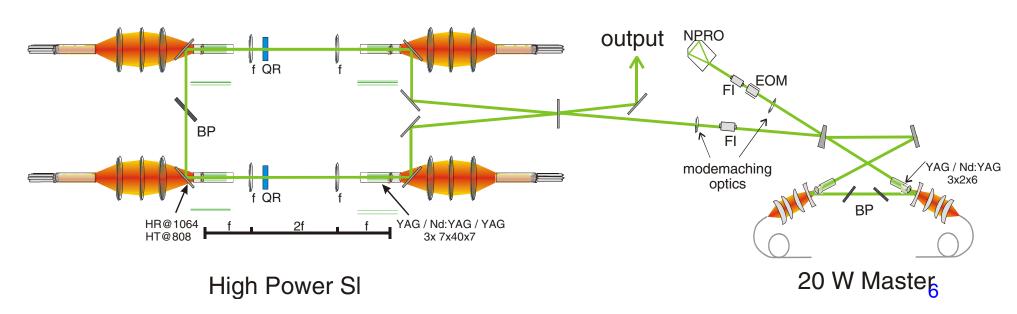
Initial and Advanced LIGO


- ☐ Factor 10 better amplitude sensitivity
 - \rightarrow (Reach)³ = rate
- Factor 4 lower frequency bound
- ☐ Factor 100 better narrow-band
- NS Binaries:
 - ➤ Initial LIGO: ~20 Mpc
 - > Adv LIGO: ~350 Mpc
- BH Binaries:
 - ➤ Initial LIGO: 10 M_o, 100 Mpc
 - \rightarrow Adv LIGO: 50 M_o, z=2
- Known Pulsars:
 - \triangleright Initial LIGO: ε = 3x10⁻⁶
 - \rightarrow Adv LIGO $\varepsilon = 2x10^{-8}$
- ☐ Stochastic background:



Anatomy of the projected Adv LIGO detector performance

Advanced LIGO's Fabry-Perot Michelson Interferometer is a platform for currently envisaged enhancements to this detector architecture (e.g., flat-top beams; squeezing; Newtonian background suppression)



Pre-stabilized Laser

- ☐ Require the maximum power compatible with optical materials
 - > 180W 1064nm Nd:YAG
 - Baseline design continuing with end-pumped rod oscillator, injection locked to an NPRO
 - ≥ 2003: Prototyping well advanced ½ of Slave system has developed 100 W

Input Optics

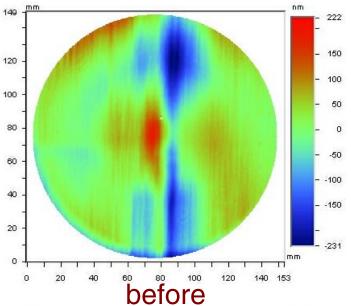
- □ Provides phase modulation for length, angle control (Pound-Drever-Hall)
- Stabilizes beam position, frequency with suspended mode-cleaner cavity
- Intensity stabilization to in-vacuum photodiode,
 2x10⁻⁹ ΔP/P at 10 Hz required (1x10⁻⁸ at 10 Hz demonstrated)
- Design similar to initial LIGO but 20x higher power
- ☐ Challenges:
 - Modulators
 - Faraday Isolators

LIGO

Test Masses / Core Optics

- □ Absolutely central mechanical and optical element in the detector
 - > 830 kW; <1ppm loss; <20ppm scatter
 - > 2x10⁸ Q; 40 kg; 32 cm dia
- □ Sapphire is the baseline test mass/core optic material; development program underway
- Characterization by very active and broad LSC working group
- Low mechanical loss, high density, high thermal conductivity all desirable attributes of sapphire
- Fused silica remains a viable fallback option

Full-size Advanced LIGO sapphire substrate

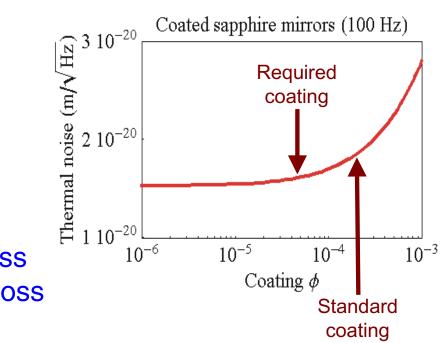


Core Optics

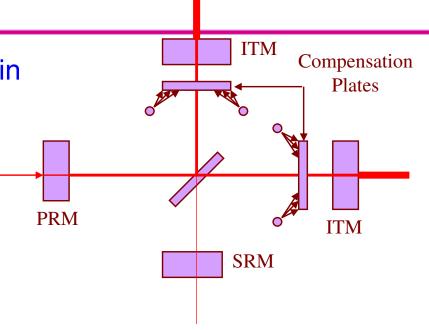
☐ Fabrication of Sapphire:

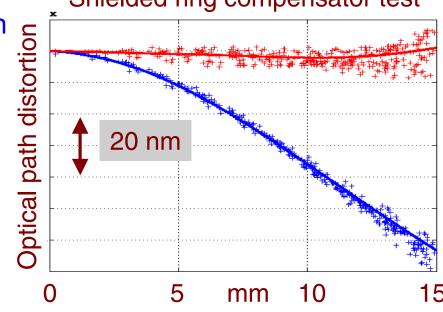
- ➤ 4 full-size Advanced LIGO boules grown (Crystal Systems); 31.4 x 13 cm; two acquired
- Mechanical losses: requirement met
 - recently measured at 200 million (uncoated)
- Bulk Homogeneity: requirement met
 - Sapphire as delivered has 50 nm-rms distortion
 - Goodrich 10 nm-rms compensation polish
- □ Polishing technology:
 - CSIRO has polished a 15 cm diam sapphire piece: 120
 1.0 nm-rms uniformity over central 120 mm (requirement is 0.75 nm)
- Bulk Absorption:
 - Uniformity needs work
 - Average level ~60 ppm, 40 ppm desired
 - Annealing shown to reduce losses

Compensation Polish



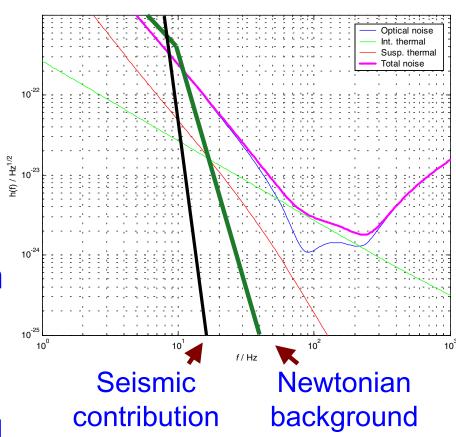
Test Mass Coatings


- □ Optical absorption (~0.5 ppm), scatter meet requirements for (good) conventional coatings
- □ Thermal noise due to coating mechanical loss recognized; program put in motion to develop low-loss coatings
- □ Ta₂O₅ identified as principal source of loss
- ☐ Test coatings show somewhat reduced loss
 - Alumina/Tantala
 - Doped Silica/Tantala
- Need ~5x reduction in loss to make compromise to performance minimal
- Expanding the coating development program
- ☐ First to-be-installed coatings needed in ~2.5 years sets the time scale



Active Thermal Compensation

- □ Removes excess 'focus' due to absorption in coating, substrate
- Allows optics to be used at all input powers
- Initial R&D successfully completed
 - Ryan Lawrence MIT PhD thesis
 - Quasi-static ring-shaped additional heating
 - Scan to complement irregular absorption
- Sophisticated thermal model ('Melody') developed to calculate needs and solution
- ☐ Gingin facility (ACIGA) readying tests with Lab suspensions, optics
- Application to initial LIGO in preparation

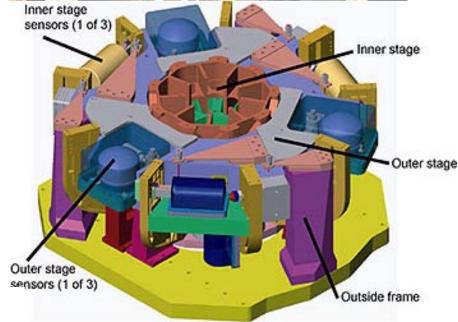


Isolation: Requirements

- Render seismic noise a negligible limitation to GW searches
 - Newtonian background will dominate for frequencies less than ~15 Hz
 - Suspension and isolation contribute to attenuation
- □ Reduce or eliminate actuation on test masses
 - Actuation source of direct noise, also increases thermal noise
 - Acquisition challenge greatly reduced
 - ➤ In-lock (detection mode) control system challenge is also reduced

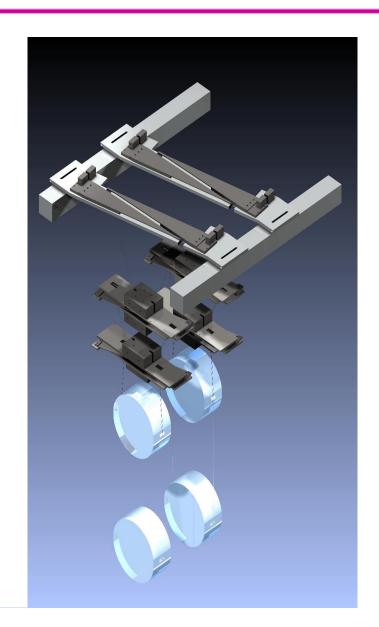
Isolation: Pre-Isolator

- □ External stage of low-frequency pre-isolation (→ ~1 Hz)
 - > Tidal, microseismic peak reduction
 - DC Alignment/position control and offload from the suspensions
 - > 1 mm pp range
- Lead at Stanford
- Prototypes in test and evaluation at MIT for early deployment at Livingston in order to reduce the cultural noise impact on initial LIGO
 - System performance exceeds Advanced LIGO requirements



Isolation: Two-stage platform

- ☐ Choose an active approach:
 - high-gain servo systems, two stages of 6 degree-of-freedom each
 - Allows extensive tuning of system after installation, operational modes
 - Dynamics decoupled from suspension systems
- Lead at LSU
- Stanford Engineering Test Facility Prototype fabricated
 - Mechanical system complete
 - Instrumentation being installed
 - First measurements indicate excellent actuator – structure alignment



Suspensions: Test Mass Quads

- Adopt GEO600 monolithic suspension assembly
- Requirements:
 - minimize suspension thermal noise
 - Complement seismic isolation
 - Provide actuation hierarchy
- Quadruple pendulum design chosen
 - Fused silica fibers, bonded to test mass
 - Leaf springs (VIRGO origin) for vertical compliance
- Success of GEO600 a significant comfort
 - > 2002: All fused silica suspensions installed
- □ PPARC funding approved: significant financial, technical contribution; quad suspensions, electronics, and some sapphire substrates
 - U Glasgow, Birmingham, Rutherford
 - Quad lead in UK

GW readout, Systems

- ☐ Signal recycled Michelson Fabry-Perot
 - Offers flexibility in instrument response, optimization for technical noises, sources
 - Can also provide narrowband response ~10⁻²⁴/Hz^{1/2} up to ~2 kHz
 - Critical advantage: can distribute optical power in interferometer as desired
- □ Three table-top prototypes give direction for sensing, locking system
- □ Glasgow 10m prototype: control matrix elements confirmed
- □ Readout choice DC rather than RF for GW sensing
 - Offset ~ 1 picometer from interferometer dark fringe
 - > Best SNR, simplifies laser, photodetection requirements
- ☐ Caltech 40m prototype in construction, early testing
 - > Complete end-to-end test of readout, controls, data acquisition

Upgrade of all three interferometers

- ☐ In discovery phase, tune all three to broadband curve
 - > 3 interferometers nearly doubles the event rate over 2 interferometers
 - Improves non-Gaussian statistics
 - Commissioning on other LHO IFO while observing with LHO-LLO pair
- □ In observation phase, the same IFO configuration can be tuned to increase low or high frequency sensitivity
 - sub-micron shift in the operating point of one mirror suffices
 - third IFO could e.g.,
 - observe with a narrow-band VIRGO
 - ❖ focus alone on a known-frequency periodic source
 - focus on a narrow frequency band associated with a coalescence, or BH ringing of an inspiral detected by other two IFOs

Baseline plan

☐ Initial LIGO Observation at design sensitivity 2004 – 2006 Significant observation within LIGO Observatory Significant networked observation with GEO, VIRGO, TAMA ☐ Structured R&D program to develop technologies Conceptual design developed by LSC in 1998 Cooperative Agreement carries R&D to Final Design Now: Proposal is for fabrication, installation positively reviewed ...process leading to construction should proceed" ☐ Proposed start 2005 Sapphire Test Mass material, seismic isolation fabrication Prepare a 'stock' of equipment for minimum downtime, rapid installation ☐ Start installation in 2007 Baseline is a staggered installation, Livingston and then Hanford □ Coincident observations by 2010 ☐ Optimism for networked observation with other '2nd generation' instruments

Advanced LIGO

CORNELL

G030488-00-M

WASHINGTON STATE

THE UNIVERSITY O

Advanced LIGO will play an important role in leading the field to maturity

The Physics of the Universe