

Advanced LIGO Photodiode Development

David Jackrel, PhD Candidate Stanford University Dept. of Materials Science and Engineering James S. Harris

> Hannover, Germany August 20th, 2003 LIGO-G030495-00-Z

Motivation & Introduction

- AdLIGO PD Specifications
- Device Materials and Design

→ InGaAs vs. GaInNAs

Device Results

- Thinned Device QE
- InGaAs & GaInNAs I-V
- 2µm Thick GaInNAs Absorption

Predictions

	LIGO I		Advanced LIGO			
Detector	Bank of 6PDs	Power Stabilization	RF Detection	GW Channel		
Steady- State Power	0.6 W	1W/ŋ	10 – 100mW	30mW		
Operating Frequency	~29 MHz	100 kHz	200MHz	100 kHz		
Quantum Efficiency	> 80%	η	> 80%	> 95%		
e.g. 1W/0.70=1.43W Resonating Tank Circuit Thinned Substrate						

1um

>100um

1mm Heat Sink-Incident Light 1mm R R 1um N+ Substrate >100um Substrate N+ **High Power** Incident Light Linear Response Heat Sink **High Speed**

Conventional PD

Adv. LIGO Rear-Illuminated PD

Harris Group Thinned Device QE (w/ 100μm, 3e17cm⁻³ Substrate)

Power **RF Detection** | **GW Channel** Detector **Stabilization** Diameter 4.5mm 1.5mm 1mm **Bias** -25V -25V -25V **Steady-State** 1130mW 110mW 50mW **Power** 3-dB 1/RC 30MHz 3MHz 60MHz **Bandwidth** $(\rightarrow 180 \text{MHz})$ Quantum ~ 90% ~ 90% ~ 90% Efficiency

Laser Interferometer Gravitational Wave Observatory (LIGO)

Arm Length4kmBeam Tube
Diameter4 ft.Vacuum Pressure~10^{-10} atmDifferential
Strain~10^{-18} m

N Plasma Source

- Effusion cells for In, Ga, Al
- Cracking cell for As
- Abrupt interfaces
- Chamber is under UHV conditions to avoid incorporating contaminants
- RHEED can be used to analyze crystal growth in situ due to UHV environment
- T=450-600°C

Harris Group Bolid State Lab Heterojunction Band Gap Diagram

STANFORD

InAlAs and GaAs transparent at 1.064µm \rightarrow Absorption occurs in I-region (in \uparrow E-field \diamond) alence Band Energy (V) Conduction Band Energy (V) .0 0 (a) i-laver Na-Nd m-(b) InAIAs InGaAs Charge Density, N-layer: ρ(x) I-layer: P-layer: In 25 Ga 75 As, or $\ln_{25}Al_{75}As$ In_{.25}Al_{.75}As Electric or GaAs Ga₈₈In 12</sub>N 01As 99 or GaAs Field. a(x) $E_{q1} = 1.1 eV$ E_{g2}=2.0-1.4eV $E_{q2} = 2.0 -$ 1.4eV

Full Structure Simulated by ATLAS

Harris Group

Solid State Lab

Harris Group **High Efficiency Detector Process (1)** Solid State Lab

STANFORD

1. Deposit and Pattern P-Contact

4. Flip-Chip Bond 3. Encapsulate Exposed Junction - AIN - N+ GaAs - Epitaxial - Au - Polyimide - SiN_x AR Ceramic Insulator Coating Substrate Layers Contacts

2. Etch Mesa – H₂SO₄:H₂O₂:H₂0 and Passivate in $(NH_4)_2S+$

5. Thin N+ GaAs Substrate

	LIGO I		Advanced LIGO	
Detector	Bank of 6PDs	Power Stabilization	RF Detection	GW Channel
Steady- State Power	0.6 W	1W/η	10 – 100mW	30mW
Operating Frequency	~29 MHz	100 kHz	200MHz	100 kHz
Quantum Efficiency	> 80%	η	> 80%	> 90%-95%

Quantum Efficiency vs. Bias vs. Optical Power Unfocused Beam, InGaAs Device

Solid State Lab Free-Carrier Absorption

Bolid State Lab Surface Passivation Results (2)

Large InGaAs Devices, –20V Bias

Device Diameter (m)

RC- PD acting as a Low-Pass Filter

LCR #1- PD // Inductor as a Tuned Band-Pass Filter (with large R=50Ω)

LCR #2,3- PD // Inductor as a Tuned Band-Pass Filter ($R_s=1\Omega$)

