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Perturbation method in the assessment of radiation

reaction in the capture of stars by black holes
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Abstract. This work deals with the motion of a radially falling star in
Schwarzschild geometry and correctly identifies radiation reaction terms by the
perturbative method. The results are: i) identification of all terms up to first
order in perturbations and second in trajectory deviation, including radiation
reaction terms; ii) renormalisation of divergent terms by the zeta Riemann and
Hurwitz functions. The work implements a method previously identified by one
of the authors and corrects some current misconceptions and results.
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1. Introduction

Radiation reaction, still partially outstanding problem in general relativity, is of most
concern for gravitational waves detectors. Its influence is manifest on the waveforms
where a phase mismatch of the templates with the signals may cause loss of detection.
We analyse a radially falling star, m, captured by a massive black hole, M, by
perturbative methods:
- The motion is studied in strong gravity, the perturbation being based on the m/M
ratio. There is no use of energy balance and adiabatic hypothesis. The former is the
imposition, not the rightful outcome, of the equality of the energy radiated with the
energy loosed by the system. The latter can’t be evoked since the particle immediately
has to react to the radiation emitted, contrarily to inspiral motion where radiation
reaction time scale is larger than the orbital period.
- Radial fall is an idealisation of the capture scenario, but applicable to final plunging.
Furthermore, most of the radiation, and thus reaction, occurs close to the horizon
where inspiral has ceased.

2. The metric, the perturbation scheme and the geodesic equation

Perturbation method for analysis of radiation reaction has been previously proposed
[1] - [3]. The metric is the sum of the Schwarzschild metric and the perturbations:

ηµν =

(

f 0

0 − 1

f

)

hµν =

(−fH0 −H1

−H1 − 1

f
H2

)

ηµν =

( 1

f
0

0 −f

)

hµν =

(

− 1

f
H0 H1

H1 −fH2

)
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gtt = f(1 −H0) gtr = grt = −H1 grr = − 1

f
(1 +H2)

gtt =
1

f
(1 +H0) gtr = grt = −H1 grr = −f(1 −H2)

gµν = ηµν + hµν gµν = ηµν − hµν f =
r − 2M

r

The position of the particle re = rp+∆rp is given by the unperturbed trajectory in
the unperturbed field rp and by several contributions, among which radiation reaction,
given by the unperturbed and perturbed field, that generate a trajectory deviation
∆rp. The field is developed in Taylor series around the real position of the particle:
gµν(re) = gµν(rp)+∆rp (∂gµν/∂r)rp

. The geodesic is only dependent upon radial and

time coordinates:

Γt
rr

(

dr

dt

)3

+
(

2Γt
tr − Γr

rr

)

(

dr

dt

)2

+
(

Γt
tt − 2Γr

tr

)

(

dr

dt

)

− Γr
tt (1)

Γt
rr =

1

2
gtt(2gtr,r − grr,t) +

1

2
gtrgrr,r Γt

tr =
1

2
gttgtt,r +

1

2
gtrgrr,t

Γr
rr =

1

2
grrgrr,r +

1

2
grt(2gtr,r − grr,t) Γt

tt =
1

2
gttgtt,t +

1

2
gtr (2grt,t − gtt,r)

Γr
tr =

1

2
grrgrr,t +

1

2
grtgtt,r Γr

tt =
1

2
grr (2grt,t − gtt,r) +

1

2
grtgtt,t

In absence of the weak field hyphothesis, h is not limited in amplitude, but the
following justifies that solely the terms in Tab. 1 are to be retained. We suppose:

[h(1)]2

η
≃ h(2)

η
≪ h(1)

η
<

∆r̈p
r̈p

since ∆r̈p, acceleration trajectory deviation, is the sum of two types of contributions.
The former is given by the Schwarzschild metric, the latter by the perturbations h:

∆r̈p = ∆r̈p(η) + ∆r̈p(h) (2)

The acceleration is dependent upon h(1) derivatives which are not necessarily
small, especially in the last phase of the trajectory. In conclusion, the terms
proportional to h(1),∆rp,∆ṙp, h

(1) derivatives and ∆r2p,∆ṙ
2
p,∆rp∆ṙp are retained,

while those to [h(1)]2, and h(2) are neglected, as the second order terms in trajectory
deviation when multiplied by first order perturbations. It is thus a development at
first order in perturbations and second order in trajectory deviation or mixed terms.
Previous work [4]-[5] was limited to first order. We write the geodesic equation in the
following form:

∆r̈p = α1∆rp + α2∆ṙp + α3∆r
2
p + α4∆ṙ

2
p + α5∆rp∆ṙp + α6 + α7∆rp + α8∆ṙp (3)

The physical significance of the terms is essential‖. The terms α1,2,3,4,5 arise
from the pure Schwarzschild metric and they may be alternatively interpreted as

‖ The α1 term correspond to the A term of [4]-[5], apart of an error in the quoted publications. The
A term, when corrected, amounts to

A =
2M

r2

[

1

r
−

3M

r2
−

3(r − M)

r2(r − 2M)2
ṙ
2
p

]

(4)

The α2 term correspond to the B term, α6 correspond to C, while the terms α3,4,5,7,8 are neglected.
The terms α1,2,6 do not represent radiation reaction.
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representing the geodesic deviation of two particles separated on the radial axis by a
∆rp distance. In the scenario of a single falling particle, they represent the unperturbed

Schwarzschild metric influence calculated on the perturbed particle trajectory, i.e. the
real position (α1,3), velocity (α2,4) or both (α5). The α6 term is the the lowest order
containing the perturbations. It represents the perturbation influence calculated at
the position and velocity of the particle in the unperturbed trajectory and thus not
radiation reaction. The α7 term represents the perturbation influence calculated on
the real position of the particle in the perturbed trajectory. Finally, the α8 term
represents the perturbation influence calculated on the real velocity of the particle
in the perturbed trajectory. The latter two terms contain the lowest order radiation
reaction terms.

3. Black hole polar perturbations equation

Zerilli [6] - [9] found the equation for polar perturbations and studied the emitted
radiation adding a source term, a freely falling test mass m into the the black M . The
equation is written in terms of the wavefunction ψl for each l-pole component, the
tortoise coordinate r∗, the polar potential Vl(r), the 2l-pole source component Sl(r, t):

d2ψl(r, t)

dr∗2
− d2ψl(r, t)

dt2
− Vl(r)ψl(r, t) = Sl(r, t) r∗ = r + 2M ln

( r

2M
− 1
)

Vl(r) =

(

1 − 2M

r

)

2λ2(λ + 1)r3 + 6λ2Mr2 + 18λM2r + 18M3

r3(λr + 3M)2
λ =

1

2
(l − 1)(l + 2)

Sl =

(

1 − 2M

r

)

4M
√

(2l + 1)π

(λ + 1)(λr + 3M)
×

{

r

(

1 − 2M

r

)2

δ′[r − rp(t)] −
(

λ+ 1 − M

r
− 6Mr

λr + 3M

)

δ[r − rp(t)]

}

where rp(t), geodesic in unperturbed Schwarzschild metric, is the inverse of:

t = −4M
( r

2M

)1/2

− 4M

3

( r

2M

)3/2

− 2M ln

[

(
√

r

2M
− 1

)(
√

r

2M
+ 1

)−1
]

(5)

The perturbations around the particle are (Regge-Wheeler gauge H l
0 = H l

2):

H l
0 = −9M3 + 9λM2r + 3λ2Mr2 + λ2(λ+ 1)r3

r2(λr + 3M)2
ψ+

3M2 − λMr + λr2

r(λr + 3M)
ψ,r+(r−2M)ψ,rr(6)

H l
1 = rψ,rt −

3M2 + 3λMr − λr2

(r − 2M)(λr + 3M)2
ψ,t (7)

The unperturbed velocity is given by (r0 is the test mass position at start):

ṙp = −
(

1 − 2M

rp

)(

2M

rp
− 2M

r0

)1/2(

1 − 2M

r0

)

−1/2

(8)
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4. Renormalisation

The infinite sum over the finite multipole components contributions leads to the
problem of dealing infinities in the results. For ever larger l the metric perturbations
tend to an asymptotic behaviour. In other words, the curves representing each metric
perturbation component for each l, accumulate over the l → ∞ curve. Thus the
subtraction from each mode of the l → ∞ leads to a convergent series. We extend the
application of the Riemann zeta function for renormalisation [4]- [5] to all pertinent
terms of the geodesic of Tab. 1. Instead, mode-sum renormalisation is planned in the
near future. For L = l+0.5, the wavefunction and its derivatives assume the following
forms at large L or l [5], [10]¶ when averaged around the particle at rp:

ψ̄ ≃ 4
√

2πmL−2.5 ψ̄,r ≃ −6
√

2πm(r0 − 2M)

r0(rp − 2M)
L−2.5 ψ̄,rr ≃ 4

√
2πm(r0 − 2M)

r0(rp − 2M)2
L−0.5

ψ̄,rrr ≃ 4
√

2πm(r0 − 2M)

r0(rp − 2M)3

[

5(r0 − 2M)

2r0
+

9M

rp
− 6

]

L−0.5

ψ̄,t ≃
6
√

2πm
√
r0 − 2Mṙp√
r0rp

L−2.5 ψ̄,tr ≃ −4
√

2πm
√
r0 − 2Mṙp√

r0rp(rp − 2M)
L−0.5

ψ̄,trr = −4
√

2πm
√
r0 − 2Mṙp√

r0rp(rp − 2M)2

[

5(r0 − 2M)

2r0
+

9M

rp
− 4

]

L−0.5

Using the above equations, eqs.(6,7) and recasting H1,t as function of
ψ̄, ψ̄,r, ψ̄,rr, ψ̄,rrr , the α6 term for large L or l around the particle is:

α6 =

∞
∑

l=0

αl
6 αl

6 = αa
6L

0 + αb
6L

−2 + αc
6L

−4 +O(L−6) (9)

The term αa
6L

0 needs + renormalisation [12]. The Riemann zeta function [13]
and its generalisation, the Hurwitz zeta function [14], are defined by:

ζ(s) =

∞
∑

l=1

(l)−s ζ(s, a) =

∞
∑

l=0

(l + a)−s (10)

where in our case a = 0.5. Thus:

ζ(s, 0.5) =

∞
∑

l=0

(l + 0.5)
−s

= 2s

[

∞
∑

l=0

(2l + 1)−s

]

(11)

Due to the imparity of the term in braces, eq.(11)is rewritten as:

ζ(s, 0.5) = 2s

{

ζ(s) −
[

∞
∑

l=0

(2l)−s

]}

= 2s
(

1 − 2−s
)

ζ(s) = (2s − 1) ζ(s) (12)

Some special values of the Hurwitz functions are:

ζ(−2, 0.5) = 0 ζ(0, 0.5) = 0 ζ(2, 0.5) =
1

2
π2 ζ(4, 0.5) =

1

6
π4(13)

¶ The derivation of such expressions, quoted from a paper in preparation by Barack and Lousto, as
referred by [5] and [11], is yet unpublished.
+ The term αa

6
L0 differs from b of eq.(13) in [5] which is again different from the value given in [10].
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The latter values when applied to eq.(9), give:

α6 = αa
6

∞
∑

l=0

(l + 0.5)0 + αb
6

∞
∑

l=0

(l + 0.5)−2 + αc
6

∞
∑

l=0

(l + 0.5)−4 + [0(l + 0.5)−6] =

αa
6ζ(0, 0.5)+αb

6ζ(2, 0.5)+αc
6ζ(4, 0.5)+[0(l+0.5)−6] =

1

2
π2αb

6+
1

6
π4αc

6+[0(l+0.5)−6](14)

For the renormalisation of α7,8 terms, the expressions: ψ̄,ttψ̄,tttψ̄,ttrψ̄,trrrψ̄,rrrr

are deducted [12] operating on the averaged wavefunctions and derivatives, and the
homogeneous wave equation. The latter is recast as [1] - [2]:

1

ρ2

d2ψl(r, t)

dr2
− d2ψl(r, t)

dt2
+
ρ− 1

rρ2

dψl(r, t)

dr
− Vl(r)ψl(r, t) = 0 (15)

where ρ = dr∗/dr. Deriving sequentially eq.(15), we get the ψ needed derivatives.
The latter are evaluated for L→ ∞ and when inserted in the α7,8 terms, result into:

α7 =

∞
∑

l=0

αl
7 αl

7 = αa
7L

2 + αb
7L

0 + αc
7L

−2 + αd
7L

−4 +O(L−6) (16)

α8 =
∞
∑

l=0

αl
8 αl

8 = αa
8L

0 + αb
8L

−2 + αc
8L

−4 +O(L−6) (17)

Normalisation of eqs. (16,17) leads to:

α7 =
1

2
π2αc

7 +
1

6
π4αd

7 + [0(l+ 0.5)−6] α8 =
1

2
π2αb

8 +
1

6
π4αc

8 + [0(l+ 0.5)−6] (18)

5. Conclusions

We have obtained the following results: i) calculation and determination of all terms up
to first order in perturbations and second in trajectory deviation, contributing to the
trajectory of a radially falling test mass in Schwarzschild geometry; ii) renormalisation
of all divergent terms stemmed from the infinite sum of finite angular momentum
dependent components by the zeta Riemann and Hurwitz functions; iii) correction
and improvements of previously published results.
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Table 1. Classification of geodesic terms.

Γ
t
rr

(

dr

dt

)3

2Γ
t
tr

(

dr

dt

)2

−Γ
r
rr

(

dr

dt

)2

Γ
t
tt

(

dr

dt

)

−2Γ
r
tr

(

dr

dt

)

−Γ
r
tt

ηttηtt,rṙ
2
p −

1

2
ηrrηrr,r ṙ

2
p

1

2
ηrrηtt,r

Unperturbed Schwarzschild terms

ηtt
,rηtt,rṙ

2
p −

1

2
ηrr

,r ηrr,r ṙ
2
p

1

2
ηrr

,r ηtt,r

ηrrηtt,rrṙ
2
p −

1

2
ηrrηrr,rrṙ

2
p

1

2
ηrrηtt,rr

α1 terms

2ηttηtt,rṙp −ηrrηrr,r ṙp

α2 terms

ηtt
,rηtt,rrṙ

2
p −

1

2
ηrr

,r ηrr,rrṙ
2
p

1

2
ηrr

,r ηtt,rr∆r2
p

α3 terms

ηttηtt,r −

1

2
ηrr

,r ηrr,rr

α4 terms

2ηtt
,rηtt,rṙp −ηrr

,r ηrr,r ṙp

2ηttηtt,rrṙp −ηrrηrr,rrṙp

α5 terms

ηtthtr,r ṙ
3
p httηtt,rṙ

2
p −

1

2
hrrηrr,rṙ

2
p

1

2
ηtthtt,tṙp −ηrrhrr,tṙp −ηrrhrt,t

−

1

2
ηtthrr,tṙ

3
p ηtthtt,rṙ

2
p −

1

2
ηrrhrr,r ṙ

2
p −

1

2
htrηtt,rṙp −hrtηtt,r ṙp

1

2
hrrηtt,r

1

2
htrηrr,rṙ

3
p

1

2
ηrrhtt,r

α6 terms

ηtt
,rhtr,r ṙ

3
p htt

,rηtt,rṙ
2
p −

1

2
hrr

,r ηrr,rṙ
2
p

1

2
ηtt

,rhtt,tṙp −ηrr
,r hrr,tṙp −ηrr

,r hrt,t

ηtthtr,rrṙ
3
p ηtt

,rhtt,rṙ
2
p −

1

2
ηrr

,r hrr,r ṙ
2
p

1

2
ηtthtt,trṙp −ηrrhrr,trṙp −ηrrhrt,tr

−

1

2
ηtt

,rhrr,tṙ
3
p httηtt,rrṙ

2
p −

1

2
hrrηrr,rr ṙ

2
p −

1

2
htr

,r ηtt,rṙp −hrt
,rηtt,r ṙp

1

2
hrr

,r ηtt,r

−

1

2
ηtthrr,trṙ

3
p ηtthtt,rrṙ

2
p −

1

2
ηrrhrr,rrṙ

2
p −

1

2
htrηtt,rrṙp −hrtηtt,rrṙp

1

2
ηrr

,r htt,r

1

2
htr

,r ηrr,rṙ
3
p

1

2
hrrηtt,rr

1

2
htrηrr,rrṙ

3
p

1

2
ηrrhtt,rr

α7 terms

3ηtthtr,r ṙ
2
p 2httηtt,r ṙp −hrrηrr,r ṙp

1

2
ηtthtt,t −ηrrhrr,t

−

3

2
ηtthrr,tṙ

2
p 2ηtthtt,rṙp −ηrrhrr,r ṙp −

1

2
htrηtt,r −hrtηtt,r

3

2
htrηrr,rṙ

2
p

α8 terms
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