

LIGO G030501-00-D

Analysis of thermal noise of newly proposed design and material for the Advanced LIGO suspensions

Francesco Costagliola

Undergraduate Student Università di Pisa

What is a LIGO suspension?

An idea of the dimension of the Joint

h t

LIGO

For the Central Beam : h = 2 mm L = 3 mm t = 10 um

Why are we interested in something so small?

- The small Joint has to carry the weight of the Test Mass
- We want to minimize Thermal Noise

LIGO

These two purposes lead to different designs..... we have to find a compromise

What is Thermal Noise ?

- Thermal Noise is generated by the Anelasticity of the material the Joint is made of
- The Joint behaves like a pendulum whose Hooke's law is modified by anelasticity

Anelasticity causes an Energy Dissipation that generates noisy fluctuations

• Φ is the Loss Factor..... and is our enemy

LIGO

- If Φ is bad, its inverse Q = 1/ Φ is our best friend
- We need to maximize the Q fator and a pendulum is the best configuration for this purpose

Frequency Response

Swing

Thermal Noise

LIGO

One Formula

For a Pendulum (our Joint) the effective Q factor is given by

•Gravitational Energy is not affected by dissipation

•The main characters are \mathbf{Q}_{m} , the Quality Factor of the material, and the Strain Energy stored in the Joint

From the Analysis

• We have to minimize Strain Energy, that goes roughly like thickness³

A very thin Joint is needed

• The Joint has to carry safely the weight of the Test Mass

We need a very strong material, with an high Q Factor

Our Candidates

MoRuB amorphous alloy

Monocrystalline Silicon

Production of MoRuB Alloy

Rapid Quenching

The Real Machine

The Result

LIGO A Good occasion to wear Fashion Sunglasses

STRESS-Strain

We need realistic Values for the Young's Modulus and Yield Point of our materials

Consruction of a small machine for Stress-Strain measures

The Principle

The Puzzle

• Complete the work on Thermal Noise analytical formula

LIGO

- Assembly of the Stress-Strain machine and measure mechanical properties of MoRuB
- Find the best design for Monocrystalline Silicon Joint

Aknowledgements

Thanks To:

- Xavier De Lepine, for the ANSYS simulations and RPG
- Charles Bordier, my Personal Quenching Trainer
- Stefano Tirelli, for online help on the Stress-Strain machine
- All the "De Salvo Group", for the fun
- Dr. Riccardo De Salvo, The Chief
- Prof. Francesco Fidecaro, my prof. in Pisa University

Aknowledgements

And of course ... The Sun of California

