

Frequency-domain interferometry diagnostic system for the detection of relativistic plasma waves

Catalin V. Filip, Electrical Engineering Department, UCLA

Introduction Relativistic Plasma Waves Can Accelerate Electrons

- Relativistic Plasma Waves have phase velocities, v_{phase}≅ c
- Externally injected electrons can "surf" these waves and get accelerated with gradients of few GeV/m (100 – 1000 times more than conventional accelerators)
- Plasma accelerators could be << in size than conventional accelerators (and therefore much cheaper)
- Relativistic Plasma Waves can be excited by the beat pattern of an intense, two-wavelength laser pulse

Introduction Relativistic Plasma Waves Can Accelerate Electrons

LIGO-G030514-00-2

Relativistic Plasma Waves (RPWs) Detection Techniques

There are TWO major ways to detect a RPW

2. by probing the RPW with light (photons) (the absolute density perturbation δn is inferred)

Detection of Relativistic Plasma Waves-Collinear Thomson Scattering

 η = index of refraction in a plasma:

$$\eta = \sqrt{1 - \frac{n}{n_{\rm crit}}} < 1$$

For a 532-nm light wave going through a plasma a change in plasma density of $\delta n=10^{14} \text{ cm}^{-3}$ (1% wave at 10¹⁶ cm⁻³) is equivalent to a change in the index of refraction of $\delta \eta \cong 10^{-8}$

Detection of Relativistic Plasma Waves-Collinear Thomson Scattering

Relativistic Plasma Waves (RPW) Detection at UCLA - Goals

- **1. Detection of the longitudinal component of RPW**
- 2. Detection of RPW at low densities (10¹⁵ cm⁻³ to 10¹⁷ cm⁻³)
- 3. Good signal-to-noise ratio (1000 to 1)
- 4. Frequency and time-resolved (both red and blue shift)
- 5. Use of independent probe to avoid stray scattering
- 6. Easy to implement, reliable, on-line with electrons

Experimental challenges

1. Scattering lasts for ~*100 ps* => MUST use streak camera => MUST use visible pulses for probing => Very small scattering efficiency

 $P_{scattered}/P_{probe} \cong 10^{-8} - 10^{-10} \Longrightarrow$ MUST use MW-power probe laser pulses with duration $\ge 2ns$ for easy synchronization \Longrightarrow Pulse energy is high \Longrightarrow MUST use high-damage threshold optics

2. The **VERY WEAK** scattered light is only ~8 Å away from the

VERY INTENSE probe light

Experimental considerations

- First use a "power" filter to decrease the power of the probe pulse (~1000 times) in order to use a grating afterwards
- 2. Use an etalon with high-damage threshold coatings as a "power" filter.
- 3. Hope that the bandwidth of the probe laser pulse is narrow enough.

Experimental Setup For Frequency And Time Resolved Collinear Thomson Scattering

Etalon preliminary test and measurements

Etalon preliminary test and measurements

Attenuation of the probe pulse at 532.1 nm is only ~10 times!

Multi-passing of the Etalon

Grating preliminary test and measurements

0th order 532nm ~5 mJ Beam splitter Ist order Monitor Razor blade on a translation stage Signal

The grating can reduce the probe light ~10⁷ times without attenuating the scattered light

White light measurements

Experimental Parameters

1. Plasma is produced by tunneling ionization of backfill gas

- H₂, He, Ar from 10^{15} cm⁻³ to 10^{17} cm⁻³
- 2. CO₂ laser parameters:
 - $\leq 100 \text{ ps FWHM}$, 2- λ , 10.3 μ m and 10.6 μ m
 - energy, 10.6/10.3≅60J/25J, maximum 1 TW
 - beam size (dia.) from 1.5" to 3.4",
 - OAP focussing down to 2 $w_0 \cong \!\! 120 \; \mu m$
 - max. 6 10¹⁵ W/cm², linearly polarized
- 3. Probe pulse parameters:
 - visible, Q-switched, Nd:YAG, 532.1 nm
 - ~100 mJ in 5 ns, 10^{11} W/cm² in plasma
- 4. Thomson scattering parameters
 - collinear (0 degree) geometry,
 - ω and k-matched
 - for relativistic plasma waves
 - interaction length ~2 $z_R \cong 2 \text{ mm}$

LIGO-G03051 froquency resolution 0.4 Å, time resolution ~100 ps (grating limited)

Time-Resolved Spectra From Collinear Thomson Scattering

C. V. Filip et al., Rev. Sci. Instr. 74, 3576 (2003)

also in July 2003 Virtual Journal of Ultrafast Science, http://www.vjultrafast.org.

Relativistic Plasma Wave Detection in H₂ Off Resonance

Temporal resolution of the diagnostic system $\cong 100$ ps

Time Resolved Spectra From F/18 Collinear Thomson Scattering, n=n_{res}

Acceleration of injected electrons in H_2 at n=3.3×n_{res}

Conclusions

A Thomson scattering diagnostic system has been used to detect relativistic plasma waves excited at low plasma densities (0.1% critical).

The probing was done collinearly with an independent probe laser pulse.

A novel spatial-spectral notch filter based on a triple-pass Fabry-Perot etalon was utilized to simultaneously attenuate the probe light ~10¹² times and collect the weak, 100-ps scattered light which is shifted by only ~8 Å.

Both the red and blue-shifted scattered light up to the third harmonic was recorded in time and frequency. Using this system, non-resonantly excited plasma waves were characterized.