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LIGO

® LIGO mission: detect gravitational waves and
initiate GW astronomy

® Commissioning talk shows considerable progress toward initial
LIGO planned performance and operation

® Direct detection of gravitational waves plausible and eagerly
awaited

® How do we move from the sensitivity of initial LIGO to an
iInstrument which regularly makes astrophysical
measurements of gravitational waves?
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LIGO Advanced LIGO

® Requirements for the next
detector in the LIGO infrastructure

» Should have assured detection of
known sources

» Should be at the limits of
reasonable extrapolations of
detector physics and technologies

» Must be a realizable, practical,
reliable instrument

» Should come into existence
neither too early nor too late

==p Advanced LIGO
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LIGO

Initial and Advanced LIGO

® Factor 10 better amplitude
sensitivity
» (Reach)?® = rate

® Factor 4 lower frequency 4522 |

bound "
® NS Binaries: for three ﬁ'E
interferometers, o
» Initial LIGO: ~20 Mpc =
» Adv LIGO: ~350 Mpc

® BH Binaries:
» Initial LIGO: 10 M, 100 Mpc
» Adv LIGO : 50 M, z=2

® Stochastic background:

» Initial LIGO: ~3e-6 10724 |

» Adv LIGO ~3e-9
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LIGO

Anatomy of the projected

Adv LIGO detector performance

10°2!

® Newtonian background, —

\

1022 "

estimate for LIGO sites

® Seismic ‘cutoff at 10 Hz —

® Suspension thermal noise — |

® Test mass thermal noise 10-23

® Unified quantum noise /

dominates at
most frequencies for full
power, broadband tuning
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® Advanced LIGO's Fabry-Perot Michelson Interferometer is flexible — can tailor to
what we learn before and after we bring it on line, to the limits of this topology
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M- Limits to the performance

® Two basic challenges:

» Sensing the motion of the test masses with the required
precision; ideally limited by quantum effects

» Reducing undesired motion of the test masses which can mask
the gravitational wave; intrinsic thermal motion a fundamental
limit, seismic noise an obvious difficulty

® Many ‘merely technical’ challenges

» Defects in the sensing system which give an excess above the
gquantum noise

» Control system sensors, dynamic range, actuators, etc.

» Work hard on these challenges to make system reliable, ease
commissioning, improve statistics of noise, availability
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LIGO Sensing for initial LIGO

® Shot-noise limited — counting statistics of 1 hed 1
photons (or photodiode current) h(f)= :
» Precision improves with (laser power)'? FL Tifo (7,,.f)
until....
® Transfer of momentum from photons to test
masses starts to dominate h(f)= 2F /2‘@9 Ty (7., /)
» 1/f2spectrum (inertia of test masses) ML\ 7°cA f2

» Gives ‘standard quantum limit’

® |[nitial LIGO power recycled interferometer

IayOUt _ Test Mass M
» Michelson for sensing strain Power on beamsplitter Arms of length L

' ' i ' Pbs = Plaser ™ Greoyolin Cavity finesse F
» Fabry-Perot arms to increase interaction time P faser Treoyeling y

» Power recycling mirror to increase circulating
power

....still far from standard quantum limit Laser
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LIGO Sensing for Advanced LIGO

® Build on initial LIGO layout —

»

retain Fabry-Perot cavities, power recycling

® |Increase the laser power to a practical limit to lower shot noise

»
»

»
»
»

Laser power — require TEMOO, stability in frequency and intensity

Absorption in optics — state-of-the-art substrates and coatings, compensation
system to correct for focussing

~180 W input power is the practical optimum for Advanced LIGO
Leads to ~0.8 MW in cavities (6cm radius beams, though)
Significant motion due to photon pressure — quantum limited!

® Modify optical layout: Add signal recycling mirror

»

»

Gives resonance for signal frequencies —
can be used to optimize response

Couples photon shot noise and
backreaction — some squeezing of light

Laser

LIGO Laboratory 8

G0300542-00-R



LIGO Stray forces on test masses

® Most Important: Make the interferometer long!
» Scaling of thermal noise, seismic, technical
» Cross-coupling from vertical to horizontal — 4km not far from ideal

® Thermal noise
» Y2 KT of noise per mode
» Coupling to motion according to fluctuation-dissipation theorem

» Gather the energy into a narrow band via low mechanical losses, place
resonances outside of measurement band by choosing the right
geometry

® |[nitial LIGO: fused silica substrates, attachments made to limit
increases in loss, steel suspension wire
® Seismic Noise
» Due to seismic activity, oceans, winds, and people

® Initial LIGO: cascaded lossy oscillators, analog of multipole low-pass
filter — and now also an active pre-isolator in preparation
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LIGO Managing Stray forces
in Advanced LIGO

® Seismic Isolation: use servo-control techniques and low-noise
seismometers to ‘slave’ optics platform to inertial space

» Decreases motion in the gravitational-wave band to a negligible level
» Decreases motion in ‘controls’ band, moving forces away from test mass
® Suspension thermal noise: all-silica fiber construction
» Intrinsically low-loss material
» Welded and ‘contacted’ construction also very low loss
® Substrate thermal noise: use monolithic Sapphire
» High Young’'s modulus
» Low mechanical loss
» (fallback: very low-loss silica)
® Optical coating thermal noise: develop low-loss materials and
techniques
» Area of active development
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LIGO Design features
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LIGO Pre-stabilized Laser

® Require the maximum power compatible with optical materials
» 1999 White Paper: 180 W at output of laser, leads to 830 kW in cavities
» Continue with Nd:YAG, 1064 nm

» Three approaches studied by LSC collaboration — stable/unstable slab
oscillator (Adelaide), slab amplifier (Stanford), end-pumped rod oscillator
]gLaser Zentrum Hannover (LZH)); evaluation concludes that all three look
easible

» Choose the end-pumped rod oscillator, injection locked to an NPRO

» 2003: Prototyping well advanced — 2 of Slave system has developed 114 W,
87 W single frequency, M2 1.1, polarization 100:1

%Wﬁﬁ i1 ﬁwﬁ output N RO
' R

EOM
%Q !
H / 7
i
BP ,\ = Z]
%_ 1 f modemaching YAGslgldGYAG
Vi V optics X2x
f QR f XW@?/ N
HR@1064 £ of . YAG I Nd:YAG / YAG
HT@s0s | / 3x 7x40x7 f\

High Power Slave 20 W Master
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LIGO Pre-stabilized laser

o Overa” su bsyStem SyStem deSign PSL Relative Intensity Noise, after PMC - 030629
. \ . L " I ‘.llll_ll _l  — l|||11 T T T T 1T 14
similar to initial LIGO 1000 loop 1208 mA) | s
» Frequency stabilization to o5 | — Elecinotes o R
i i : Shot noi 3
fixed reference cavity, | - ke
10 Hz/HZz'2 at 10 Hz required 10° | — Adv. LIGO req. (DC) | ]
), e Adv. LIGO req. (RF) : S

(10 Hz/HzV2 at 12 Hz seen in initial LIGO)

» Intensity stabilization to 2x10-° AP/P at
10 Hz required

» 2003: 1x10-8 at 10 Hz demonstrated

RIN (1/vHz)

® Max Planck Institute, Hannover leading Frequency (Hz)
the Pre-stabilized laser development

» Close interaction with Laser Zentrum Hannover
» Experience with GEO-600 laser, reliability, packaging
» German GEO Group contributing laser to Advanced LIGO
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Input Optics, Modulation
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LIGO Input Optics

Provides phase modulation for length, angle control (Pound-Drever-Hall)
Stabilizes beam position, frequency with suspended mode-cleaner cavity
Matches into main optics (6 cm beam) with suspended telescope

1999 White Paper: Design similar to initial LIGO but 20x higher power

Alignment Control

Mode Matching

|

v stabilization Telescope Into |

to Laser Core Optics / |

® Challenges: |:|:| Beam Steering |

» Modulators
» Faraday Isolators

Faraday
Isolation

Faraday
Isolation

Inter-

Laser ferometer

RF
Modulation

el

Mode Interferometer Intensity
Cleaner Length/Alignment  Stabilization
| Control to laser
[ =]

? v stablization
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LIGO  |nput Optics

® University of Florida leading
development effort
» As for initial LIGO

» 2003: LIGO Lab developing
controls, suspensions (see later...)

® 2003: .Faraday isolator from o 2| 1o 6 bl
|AP-Nizhny Novgorod =5 / Ao
» thermal birefringence P, = — -
compensated TP, B B
67.5" rotator
» Ok to 80 W — more powerful
test laser to be installed at 20
Livingston for further tests ig : Conventiond Fi
(dB optica) -40 | Lo
-45 | e’a - - - n
50 |oo® " Compensaed Design
-55
0 20 40 60 80 100

Laser Power (W) 17
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Test Masses
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LIGO  Test Masses / Core Optics

® Absolutely central mechanical and
optical element in the detector
» 830 kW; <1ppm loss; <20ppm scatter
» 2x108 Q; 40 kg; 32 cm dia
® 1999 White Paper: Sapphire as test

mass/core optic material;
development program launched

® |ow mechanical loss, high Young's
modulus, high thermal conductivity all
desirable attributes of sapphire

® Fused silica remains a viable fallback

option
® Significant progress in program Full-size Advanced LIGO
» Industrial cooperation sapphire substrate

» Characterization by very active

LSC working group
LIGO Laboratory 19

G0300542-00-R



LIGO Sapphire Core Optics

Fabrication of Sapphire:

» Full-size Advanced LIGO boules grown
(Crystal Systems); 31.4 x 13 cm

Bulk Homogeneity: requirement met

» Sapphire as delivered has 50 nm-rms
distortion

» Goodrich 10 nm-rms compensation polish

Polishing technology:

» CSIRO has polished a 15 cm diam sapphire
piece:
1.0 nm-rms uniformity over central 120 mm
(requirement is 0.75 nm)
2003: Mechanical losses: requirement met
» Highest Q measured at <250 million

» Program to identify possible anisotropies in
losses well underway: finite-element
modeling
with Q measurements of many modes

2003: Bulk Absorption:
» Measured; uniformity needs work
» Average level ~60 ppm, 40 ppm desired

Best Measured Qs for Both Sapphires

250 [®
200 °
n
L. ®
A 150
'_|
-
£ 100
S :o
50
e 3 °
0
14 16 18 20 22 24

frequency , kHz

Y [mm]

Absorption [ppm], échantillon :saphire314a10
T T T

100 —

80
40
20 P
=20
B0

-100  -80  -60 -40 -20 0 20 40 60 80 100
X [rm]

-100

100

-80




LIGO Backup: Fused Silica

Alternative test mass material

Familiar; fabrication, polishing,
coating processes well refined
Disadvantages:
» Overall thermal noise may be
higher
» Thermal noise signature not as
well suited to Adv LIGO

» Lower Young’s modulus leads to
higher coating thermal noise

» More expensive (!)

Development program to reduce
mechanical losses, understand
frequency dependence

» Annealing proven on small

samples, needs larger sample
tests and optical post-metrology

strong backup — reduction in
sensitivity would be minimal for
current parameters

G0300542-00-R
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LIGO Test Mass downselect

® Remaining tests/models:
» Absorption in second sample of sapphire
Scattering tests (inclusions)
» Q tests of other sapphire samples (with polished barrel)

» Annealing of small samples of both sapphire (absorption) and
silica (mechanical losses)

» Models of interferometer performance with absorption maps

p)

v

® April 2004 for evaluation
» Set to match suspension development plan
» Could lead to requiring further actions
» Believe we are close to adopting sapphire

LIGO Laboratory 22
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Mirror coatings
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LIGO Test Mass Coatings

Coating loss ¢ =5 * 10"

® Optical absorption (~O'.5 ppm) re_quirements 200
met by .(good) Conventlonallcoatlngs | o [sapprie,a
® RG&D mid-2000: Thermal noise due to coating = ,-477| 200,60 710°
mechanical loss recognized; LSC program S 190 ','“
put in motion to develop low-loss coatings T P
» Series of coating runs — materials, £ 190 NV \
thickness, annealing, vendors 2 g .
» Measurements on a variety of samples g 1% siica. Q
® Ta,O, identified as principal source of loss @ 0 | 200, 130707
» Typical good coating ¢=3-5e-4 10 100 1000
® Test coatings show somewhat reduced loss Coating Young’s modulus, GPa

» Alumina/Tantala
» Doped Silica/Tantala
» Best (one sample) to date: @=8e-5; 2e-4 reproducible

® Need ~5x reduction in loss to reduce current ~20% compromise to a negligible
level

LIGO Laboratory 24
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Tast Cavities

LiIGo Direct

A A

measurement e >y Ly

Ly
|

-
i

IF

|

"y | Moo cloner oSty (G
® Thermal Noise Interferometer ey B WD L ‘

(TNI) designed to measure oot P g i
coating and substrate thermal
noise

® Presently set up with fused
silica substrates with ovrwvmersoe. = [~>F
COﬂVGﬂtIOﬂG' CoatlngS THI neise flaar 10723403

® 2003: Recent results appear to

show confirmation of models

for anticipated coating losses;

similar confirmation from

Japanese experiment

® Sapphire substrates for

Dizplacerment Maiz (mdvHz)

measurement of thermoelastic

noise ready

1000 10000
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Thermal Compensation
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LIGO  Active Thermal Compensation

IT™M

® 1999 White Paper: Need recognized, Comlﬁ’lzltljjﬁon
concept laid out OVNO
® Removes excess ‘focus’ due to absorption in P O%
coating, substrate ' /4 AJ e
® Allows optics to be used at all input powers PRM ¢ ™™
® Initial R&D successfully completed SRM
» Quasi-static ring-shaped additional heating

» Scan to complement irregular absorption

® Sophisticated thermal model (‘Melody’)
developed to calculate needs and solution

® 2003: Gingin facility (ACIGA) readying
tests with Lab suspensions, optics

® 2003: Application to initial LIGO
in preparation

Ion

Optical path distort
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LIGO Sejsmic Isolation
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LIGO

Isolation: Requirements

® 1999 White Paper: Render
seismic noise a negligible
limitation to GW searches

» Newtonian background will dominate
for frequencies less than ~15 Hz

» Suspension and isolation contribute
to attenuation

® 1999 White Paper: Reduce
or eliminate actuation
on test masses

» Actuation source of direct noise, also
increases thermal noise

» Acquisition challenge greatly reduced

» In-lock (detection mode) control
system challenge is also reduced

LIGO Laboratory
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Lico |solation: m.ulti-stage
solution

® Choose an active approach:

» high-gain servo systems, two stages of
degree-of-freedom each

» External hydraulic actuator pre-isolator

» Allows extensive tuning of system
after installation, operational modes

» Dynamics decoupled from suspension
systems

® LeadatlLSU
® 2003: External pre-isolator Prototypes in
test and evaluation at MIT

» early deployment at Livingston in order to
reduce the cultural noise for initial LIGO

» System performance meets initial needs,
exceeds Advanced LIGO requirements

® 2003: Stanford Engineering Test Facility
Prototype fabricated, in test

» First measurements indicate excellent
actuator—structure alignment, rigidity

® 2003: Vendor chosen for final Prototypes

>

LIGO Laboratory
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LIGO
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LIGO Suspensions: Test Mass Quads

® 1999 White Paper: Adopt GEO600
monolithic suspension assembly

® Requirements:
» minimize suspension thermal noise
» Complement seismic isolation
» Provide actuation hierarchy

® Quadruple pendulum design chosen
» Fused silica fibers, bonded to test mass

» Leaf springs (VIRGO origin) for vertical
compliance

® Success of GEO600 a significant comfort
» All fused silica suspensions installed
» Ultimately tests to ~12x Adv LIGO at 40 Hz
® 2003: PPARC funding approved!

» significant
financial, technical contribution;
quad suspensions, electronics, and some _ | r
sapphire substrates \ 4

» U Glasgow, Birmingham, Rutherford
» Quad lead in UK
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Suspensions:

Yeo Triples

® Triple suspensions for auxiliary optics =
» Relaxed performance requirements |

® Uses same fused-silica design,
control hierarchy

® 2003: Mode Cleaner suspension
design completed, prototype
triple suspension fabricated,
stand-alone testing underway

® To be installed in LASTI Spring-2004
» Fit tests
» Controls/actuation testing

® 2003: Recycling mirror design started

G0300542-00-R



LIGO GW Readout
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LIGO GW readout, Systems

® 1999 White Paper: Signal recycled
Michelson Fabry-Perot configuration

» Offers flexibility in instrument response,
optimization for technical noises

» Can also provide narrowband response

» Critical advantage: can distribute optical
power in interferometer as desired

® Three table-top prototypes give ey "
direction for sensing, locking system

® 2003: Glasgow 10m prototype: control matrix elements confirmed
® 2003: Readout choice — DC rather than RF for GW sensing

» Offset ~ 1 picometer from interferometer dark fringe
» Best SNR, simplifies laser, photodetection requirements

® 2003: Caltech 40m prototype in testing

» Complete end-to-end test of readout, controls, data acquisition

Thermal noise

LIGO Laboratory 35
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LIGO System testing

® |[nitial LIGO experience: thorough testing off-site
necessary

® \ery significant feature in R&D plan: testing of
accurate prototypes in context

® Two major facilities:

» MIT LASTI facility — full scale tests of seismic isolation,
suspensions, laser, mode Cleaner

» 2003: pre-isolator development, intensity stabilization
for AdL, frequency servos

» Caltech 40m interferometer — sensing/controls tests of
readout, engineering model for data acquisition,
software

» 2003: completion of construction phase
® Support from LSC testbeds

» Gingin — thermal compensation

» Glasgow 10m — readout

» Stanford ETF — seismic isolation

» GEO600 — much more than a prototype! 36
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LIGO Baseline plan

® [nitial LIGO Observation at design sensitivity 2004 — 2006
» Significant observation within LIGO Observatory
» Significant networked observation with GEO, VIRGO, TAMA

® Structured R&D program to develop technologies
» Conceptual design developed by LSC in 1998
» Cooperative Agreement carries R&D to Final Design

® 2003: Proposal for fabrication, installation
» NSF considering proposal and timeline
® Proposal calls for project start in 2005

» Sapphire Test Mass material, seismic isolation fabrication long leads
» Prepare a ‘stock’ of equipment for minimum downtime, rapid installation

® Start installation in 2007

» Baseline is a staggered installation, Livingston and then Hanford
® Coincident observations by 2010
» At an advanced level of commissioning

LIGO Laboratory 37
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LIGO Advanced LIGO R&D

® Answering Charge — Progress in the following domains:

® Laser:in 2003,
» selected baseline power head design,
» supported prototyping of design, observe >1/2 final power goal in 72 of system.
» Demonstrated intensity stabilization to requirements at 40 Hz and higher, within factor
of 5 at most stringent frequency (10 Hz)
® Substrates: in 2003,
» Received full-size 40 kg, 32 cm diameter sapphire substrates
» Found mechanical losses in these substrates to meet requirements

» Characterized absorption in these substrates, supported successful annealing
techniques on smaller pieces to reduce absorption — scaling up now

» New high Q measurements of small (200e6) and LIGO-sized (120e6) of fused silica;
supported annealing on small pieces to reduce mechanical losses — scaling up now
® Coatings, in 2003,
» Refined models for coating thermal noise
» Observed coating thermal noise in two experiments, consistent with theory
» Measured and supported measurements of mechanical losses on trial coatings
» Developed strategy for coating development, put plan into motion

LIGO Laboratory 38
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