

Advanced LIGO Research and Development

David Shoemaker
NSF Annual Review of LIGO
17 November 2003

LIGO mission: detect gravitational waves and initiate GW astronomy

- Commissioning talk shows considerable progress toward initial LIGO planned performance and operation
- Direct detection of gravitational waves plausible and eagerly awaited
- How do we move from the sensitivity of initial LIGO to an instrument which regularly makes astrophysical measurements of gravitational waves?

Advanced LIGO

- Requirements for the next detector in the LIGO infrastructure
 - » Should have assured detection of known sources
 - » Should be at the limits of reasonable extrapolations of detector physics and technologies
 - » Must be a realizable, practical, reliable instrument
 - » Should come into existence neither too early nor too late

Initial and Advanced LIGO

- Factor 10 better amplitude sensitivity
 - » (Reach)³ = rate
- Factor 4 lower frequency 10⁻²²
- NS Binaries: for three interferometers,
 - » Initial LIGO: ~20 Mpc
 - » Adv LIGO: ~350 Mpc 10⁻²³
- BH Binaries:
 - » Initial LIGO: 10 M_o, 100 Mpc
 - » Adv LIGO : 50 M_{o} , z=2
- Stochastic background:
 - » Initial LIGO: ~3e-6
 - » Adv LIGO ~3e-9

Anatomy of the projected Adv LIGO detector performance

 Advanced LIGO's Fabry-Perot Michelson Interferometer is flexible – can tailor to what we learn before and after we bring it on line, to the limits of this topology

Limits to the performance

- Two basic challenges:
 - » Sensing the motion of the test masses with the required precision; ideally limited by quantum effects
 - » Reducing undesired motion of the test masses which can mask the gravitational wave; intrinsic thermal motion a fundamental limit, seismic noise an obvious difficulty
- Many 'merely technical' challenges
 - » Defects in the sensing system which give an excess above the quantum noise
 - » Control system sensors, dynamic range, actuators, etc.
 - » Work hard on these challenges to make system reliable, ease commissioning, improve statistics of noise, availability

Sensing for initial LIGO

- Shot-noise limited counting statistics of photons (or photodiode current)
 - » Precision improves with (laser power)^{1/2} until
- Transfer of momentum from photons to test masses starts to dominate
 - » $1/f^2$ spectrum (inertia of test masses)
 - » Gives 'standard quantum limit'
- Initial LIGO power recycled interferometer layout
 - » Michelson for sensing strain
 - » Fabry-Perot arms to increase interaction time
 - » Power recycling mirror to increase circulating power
 -still far from standard quantum limit

$$h(f) = \frac{1}{F^2 L} \sqrt{\frac{hc\lambda}{8P_{bs}}} \frac{1}{T_{ifo}(\tau_s, f)}$$

$$h(f) = \frac{2F}{ML} \sqrt{\frac{2hP_{bs}}{\pi^3 c\lambda}} \frac{T_{ifo}(\tau_s, f)}{f^2}$$

Sensing for Advanced LIGO

- Build on initial LIGO layout
 - » retain Fabry-Perot cavities, power recycling
- Increase the laser power to a practical limit to lower shot noise
 - » Laser power require TEM00, stability in frequency and intensity
 - » Absorption in optics state-of-the-art substrates and coatings, compensation system to correct for focussing

LIGO Laboratory

- » ~180 W input power is the practical optimum for Advanced LIGO
- » Leads to ~0.8 MW in cavities (6cm radius beams, though)
- » Significant motion due to photon pressure quantum limited!
- Modify optical layout: Add signal recycling mirror
 - Gives resonance for signal frequencies can be used to optimize response
 - » Couples photon shot noise and backreaction – some squeezing of light

Stray forces on test masses

- Most Important: Make the interferometer long!
 - » Scaling of thermal noise, seismic, technical
 - » Cross-coupling from vertical to horizontal 4km not far from ideal
- Thermal noise
 - » ½ kT of noise per mode
 - » Coupling to motion according to fluctuation-dissipation theorem
 - » Gather the energy into a narrow band via low mechanical losses, place resonances outside of measurement band by choosing the right geometry
- Initial LIGO: fused silica substrates, attachments made to limit increases in loss, steel suspension wire
- Seismic Noise
 - » Due to seismic activity, oceans, winds, and people
- Initial LIGO: cascaded lossy oscillators, analog of multipole low-pass filter – and now also an active pre-isolator in preparation

Managing Stray forces in Advanced LIGO

- Seismic Isolation: use servo-control techniques and low-noise seismometers to 'slave' optics platform to inertial space
 - » Decreases motion in the gravitational-wave band to a negligible level
 - » Decreases motion in 'controls' band, moving forces away from test mass
- Suspension thermal noise: all-silica fiber construction
 - » Intrinsically low-loss material
 - » Welded and 'contacted' construction also very low loss
- Substrate thermal noise: use monolithic Sapphire
 - » High Young's modulus
 - » Low mechanical loss
 - » (fallback: very low-loss silica)
- Optical coating thermal noise: develop low-loss materials and techniques
 - » Area of active development

LIGO Design features **40 KG SAPPHIRE TEST MASSES ACTIVE ISOLATION** INPUT MODE CLEANER **QUAD SILICA SUSPENSION** ACTIVE THERMAL 180 W LASER, T=0.5%CORRECTION **MODULATION SYSTEM** 830KW 125W LASER MOD. BS PRM ITM ETM T~6% T=5%SRM OUTPUT MODE PRM Power Recycling Mirror CLEANER BS Beam Splitter ITM **Input Test Mass** ETM End Test Mass PD SRM Signal Recycling Mirror GW READOUT PD Photodiode

Pre-stabilized Laser

- Require the maximum power compatible with optical materials
 - » 1999 White Paper: 180 W at output of laser, leads to 830 kW in cavities
 - » Continue with Nd:YAG, 1064 nm
 - » Three approaches studied by LSC collaboration stable/unstable slab oscillator (Adelaide), slab amplifier (Stanford), end-pumped rod oscillator (Laser Zentrum Hannover (LZH)); evaluation concludes that all three look feasible
 - » Choose the end-pumped rod oscillator, injection locked to an NPRO
 - » 2003: Prototyping well advanced $\frac{1}{2}$ of Slave system has developed 114 W, 87 W single frequency, M² 1.1, polarization 100:1

Pre-stabilized laser

- Overall subsystem system design similar to initial LIGO
 - Frequency stabilization to fixed reference cavity,
 10 Hz/Hz^{1/2} at 10 Hz required (10 Hz/Hz^{1/2} at 12 Hz seen in initial LIGO)
 - » Intensity stabilization to $2x10^{-9} \Delta P/P$ at 10 Hz required
 - » 2003: 1x10⁻⁸ at 10 Hz demonstrated
- Max Planck Institute, Hannover leading the Pre-stabilized laser development
 - » Close interaction with Laser Zentrum Hannover
 - » Experience with GEO-600 laser, reliability, packaging
 - » German GEO Group contributing laser to Advanced LIGO

Input Optics

- Provides phase modulation for length, angle control (Pound-Drever-Hall)
- Stabilizes beam position, frequency with suspended mode-cleaner cavity
- Matches into main optics (6 cm beam) with suspended telescope
- 1999 White Paper: Design similar to initial LIGO but 20x higher power

Input Optics

- University of Florida leading development effort
 - » As for initial LIGO
 - » 2003: LIGO Lab developing controls, suspensions (see later...)
- 2003: Faraday isolator from IAP-Nizhny Novgorod
 - » thermal birefringence compensated
 - » Ok to 80 W more powerful test laser to be installed at Livingston for further tests

Test Masses / Core Optics

- Absolutely central mechanical and optical element in the detector
 - » 830 kW; <1ppm loss; <20ppm scatter
 - » 2x10⁸ Q; 40 kg; 32 cm dia
- 1999 White Paper: Sapphire as test mass/core optic material; development program launched
- Low mechanical loss, high Young's modulus, high thermal conductivity all desirable attributes of sapphire
- Fused silica remains a viable fallback option
- Significant progress in program
 - » Industrial cooperation
 - » Characterization by very active LSC working group

Full-size Advanced LIGO sapphire substrate

Sapphire Core Optics

- Fabrication of Sapphire:
 - » Full-size Advanced LIGO boules grown (Crystal Systems); 31.4 x 13 cm
- Bulk Homogeneity: requirement met
 - » Sapphire as delivered has 50 nm-rms distortion
 - » Goodrich 10 nm-rms compensation polish
- Polishing technology:
 - » CSIRO has polished a 15 cm diam sapphire piece:
 - 1.0 nm-rms uniformity over central 120 mm (requirement is 0.75 nm)
- 2003: Mechanical losses: requirement met
 - » Highest Q measured at <250 million
 - » Program to identify possible anisotropies in losses well underway: finite-element modeling with Q measurements of many modes
- 2003: Bulk Absorption:
 - » Measured; uniformity needs work
 - » Average level ~60 ppm, 40 ppm desired

Backup: Fused Silica

- Alternative test mass material
- Familiar; fabrication, polishing, coating processes well refined
- Disadvantages:
 - » Overall thermal noise may be higher
 - » Thermal noise signature not as well suited to Adv LIGO
 - » Lower Young's modulus leads to higher coating thermal noise
 - » More expensive (!)
- Development program to reduce mechanical losses, understand frequency dependence
 - » Annealing proven on small samples, needs larger sample tests and optical post-metrology
- strong backup reduction in sensitivity would be minimal for current parameters

Test Mass downselect

- Remaining tests/models:
 - » Absorption in second sample of sapphire
 - » Scattering tests (inclusions)
 - » Q tests of other sapphire samples (with polished barrel)
 - » Annealing of small samples of both sapphire (absorption) and silica (mechanical losses)
 - » Models of interferometer performance with absorption maps
- April 2004 for evaluation
 - » Set to match suspension development plan
 - » Could lead to requiring further actions
 - » Believe we are close to adopting sapphire

Test Mass Coatings

- Optical absorption (~0.5 ppm) requirements met by (good) conventional coatings
- R&D mid-2000: Thermal noise due to coating mechanical loss recognized; LSC program put in motion to develop low-loss coatings
 - » Series of coating runs materials, thickness, annealing, vendors
 - » Measurements on a variety of samples
- Ta₂O₅ identified as principal source of loss
 - » Typical good coating ϕ =3-5e-4
- Test coatings show somewhat reduced loss
 - » Alumina/Tantala
 - » Doped Silica/Tantala
 - » Best (one sample) to date: φ =8e-5; 2e-4 reproducible
- Need ~5x reduction in loss to reduce current ~20% compromise to a negligible level

Coating Young's modulus, GPa

LIGO Direct measurement

- Thermal Noise Interferometer (TNI) designed to measure coating and substrate thermal noise
- Presently set up with fused silica substrates with conventional coatings
- 2003: Recent results appear to show confirmation of models for anticipated coating losses; similar confirmation from Japanese experiment
- Sapphire substrates for measurement of thermoelastic noise ready

Active Thermal Compensation

- 1999 White Paper: Need recognized, concept laid out
- Removes excess 'focus' due to absorption in coating, substrate
- Allows optics to be used at all input powers
- Initial R&D successfully completed
 - » Quasi-static ring-shaped additional heating
 - » Scan to complement irregular absorption
- Sophisticated thermal model ('Melody') developed to calculate needs and solution
- 2003: Gingin facility (ACIGA) readying tests with Lab suspensions, optics
- 2003: Application to initial LIGO in preparation

Isolation: Requirements

- 1999 White Paper: Render seismic noise a negligible limitation to GW searches
 - » Newtonian background will dominate for frequencies less than ~15 Hz
 - » Suspension and isolation contribute to attenuation
- 1999 White Paper: Reduce or eliminate actuation on test masses
 - » Actuation source of direct noise, also increases thermal noise
 - » Acquisition challenge greatly reduced
 - » In-lock (detection mode) control system challenge is also reduced

Ligo Isolation: multi-stage solution

- Choose an active approach:
 - high-gain servo systems, two stages of 6 degree-of-freedom each
 - » External hydraulic actuator pre-isolator
 - Allows extensive tuning of system after installation, operational modes
 - Dynamics decoupled from suspension systems
- Lead at LSU
- 2003: External pre-isolator Prototypes in test and evaluation at MIT
 - early deployment at Livingston in order to reduce the cultural noise for initial LIGO
 - System performance meets initial needs, exceeds Advanced LIGO requirements
- **2003**: Stanford Engineering Test Facility Prototype fabricated, in test
 - First measurements indicate excellent actuator-structure alignment, rigidity
- 2003: Vendor chosen for final Prototypes

Suspensions: Test Mass Quads

- 1999 White Paper: Adopt GEO600 monolithic suspension assembly
- Requirements:
 - » minimize suspension thermal noise
 - » Complement seismic isolation
 - » Provide actuation hierarchy
- Quadruple pendulum design chosen
 - » Fused silica fibers, bonded to test mass
 - » Leaf springs (VIRGO origin) for vertical compliance
- Success of GEO600 a significant comfort
 - » All fused silica suspensions installed
 - » Ultimately tests to ~12x Adv LIGO at 40 Hz
- 2003: PPARC funding approved!
 - » significant financial, technical contribution; quad suspensions, electronics, and some sapphire substrates
 - » U Glasgow, Birmingham, Rutherford
 - » Quad lead in UK

Suspensions: Triples

- Triple suspensions for auxiliary optics
 - » Relaxed performance requirements
- Uses same fused-silica design, control hierarchy
- 2003: Mode Cleaner suspension design completed, prototype triple suspension fabricated, stand-alone testing underway
- To be installed in LASTI Spring-2004
 - » Fit tests
 - » Controls/actuation testing
- 2003: Recycling mirror design started

GW readout, Systems

- 1999 White Paper: Signal recycled Michelson Fabry-Perot configuration
 - » Offers flexibility in instrument response, optimization for technical noises
 - » Can also provide narrowband response
 - » Critical advantage: can distribute optical power in interferometer as desired
- Three table-top prototypes give direction for sensing, locking system

- 2003: Glasgow 10m prototype: control matrix elements confirmed
- 2003: Readout choice DC rather than RF for GW sensing
 - » Offset ~ 1 picometer from interferometer dark fringe
 - » Best SNR, simplifies laser, photodetection requirements
- 2003: Caltech 40m prototype in testing
 - » Complete end-to-end test of readout, controls, data acquisition

System testing

- Initial LIGO experience: thorough testing off-site necessary
- Very significant feature in R&D plan: testing of accurate prototypes in context
- Two major facilities:
 - » MIT LASTI facility full scale tests of seismic isolation, suspensions, laser, mode Cleaner
 - » 2003: pre-isolator development, intensity stabilization for AdL, frequency servos
 - » Caltech 40m interferometer sensing/controls tests of readout, engineering model for data acquisition, software
 - » 2003: completion of construction phase
- Support from LSC testbeds
 - » Gingin thermal compensation
 - » Glasgow 10m readout
 - » Stanford ETF seismic isolation
 - » GEO600 much more than a prototype!

Baseline plan

- Initial LIGO Observation at design sensitivity 2004 2006
 - » Significant observation within LIGO Observatory
 - » Significant networked observation with GEO, VIRGO, TAMA
- Structured R&D program to develop technologies
 - » Conceptual design developed by LSC in 1998
 - » Cooperative Agreement carries R&D to Final Design
- 2003: Proposal for fabrication, installation
 - » NSF considering proposal and timeline
- Proposal calls for project start in 2005
 - » Sapphire Test Mass material, seismic isolation fabrication long leads
 - » Prepare a 'stock' of equipment for minimum downtime, rapid installation
- Start installation in 2007
 - » Baseline is a staggered installation, Livingston and then Hanford
- Coincident observations by 2010
 - » At an advanced level of commissioning

Advanced LIGO R&D

- Answering Charge Progress in the following domains:
- Laser: in 2003,
 - » selected baseline power head design,
 - » supported prototyping of design, observe >1/2 final power goal in $\frac{1}{2}$ of system.
 - » Demonstrated intensity stabilization to requirements at 40 Hz and higher, within factor of 5 at most stringent frequency (10 Hz)
- Substrates: in 2003,
 - » Received full-size 40 kg, 32 cm diameter sapphire substrates
 - » Found mechanical losses in these substrates to meet requirements
 - » Characterized absorption in these substrates, supported successful annealing techniques on smaller pieces to reduce absorption – scaling up now
 - » New high Q measurements of small (200e6) and LIGO-sized (120e6) of fused silica; supported annealing on small pieces to reduce mechanical losses scaling up now
- Coatings, in 2003,
 - » Refined models for coating thermal noise
 - » Observed coating thermal noise in two experiments, consistent with theory
 - » Measured and supported measurements of mechanical losses on trial coatings
 - » Developed strategy for coating development, put plan into motion