

The fast discrete Q-transform

Shourov K. Chatterji

November 10-13, 2003

ASIS Session

LIGO-G030544-00-Z LIGO Scientific Collaboration 1/12

Motivation

Maximize signal to noise ratio by finding the time frequency pixel which most closely matches a signal.

Look for gravitational-wave bursts or detector glitches with

$$Q \lesssim 10$$
.

Tilings

Short Time Fourier Transform

Discrete Constant Q-Transform

Discrete Wavelet Transform

Example

Oversampling of the time-frequency plane

Example

Sufficient sampling of the time-frequency plane

Discrete Q-Transform

Project x[n] onto time-shifted windowed sinusoids, whose widths are inversely proportional to their center frequencies.

$$X_{Q}[m,k] = \sum_{n=0}^{N-1} x[n]e^{-i2\pi nk/N}w[m-n,k]$$

Discrete Q-Transform

Efficient computation is possible via the FFT

$$X_Q[m,k] = \sum_{l=0}^{N-1} \tilde{X}[l+k]\tilde{W}[l,k]e^{-i2\pi ml/N}$$

$$\tilde{X}[l] = \sum_{n=0}^{N-1} x[n]e^{-i2\pi nl/N}$$

$$\tilde{W}[l] = \sum_{n=0}^{N-1} w[n, k]e^{-i2\pi nl/N}$$

Energy

The window normalization is chosen to obey a generalized Parseval's theorem.

$$\frac{1}{f_s} \sum_{m=0}^{N-1} \sum_{k=0}^{N-1} |X_Q[m,k]|^2 = \frac{1}{N} \sum_{n=0}^{N-1} |x[n]|^2 = \sigma_x^2$$

The square root of the reported pixel energy yields the sum of the background noise amplitude spectral density and the signal root sum square in units of $Hz^{-1/2}$.

Computation Efficiency

- Hanning window in frequency
- Automatic 50 percent overlap
- Oversampling for efficiency
- Computational order?

Guassian Statistics

Assuming white Gaussian noise, the distribution of pixel energies at a particular frequency follows an exponential distribution.

$$p(E) dE = \exp\left(-\frac{E}{E_n}\right) \frac{dE}{E_n}$$
 $P(E > E_0) = \exp\left(-\frac{E_0}{E_n}\right)$

$$P(E > E_0) = \exp\left(-\frac{E_0}{E_n}\right)$$

significance =
$$-\log_{10} P(E > E_0)$$

$$SNR = \left(\frac{E - E_n}{E_n}\right)^{1/2} \qquad RSS = (E - E_n)^{1/2}$$

LPEF Whitening

Coherent signal is Rician distributed

LPEF Whitening

Linear Prediction restores Exponential distribution

Event Selection

- choose white noise false rate
- yields significance threshold
- identify significance pixels
- group overlapping pixels
- select most significant pixel
- report pixel parameters

Pipeline Implementation

A prototype pipeline has been implemented in Matlab and C++

http://ligo.mit.edu/ shourov/q/

Future Plans

- Detection efficiency vs. false rate
 - hardware injections[†]
 - software injections (requires calibration)
- Veto efficiency and safety studies[†]
- Post processing (requires calibration)
 - amplitude estimation
 - amplitude and waveform consistency
- Migrate to other platforms?
 - DMT
 - LDAS (BurstDSO)

†Friday Burst group meeting?