Laser Interferometer Gravitational-Wave Observatory (LIGO)

On detector timing: the dawn of S3

Szabolcs Márka, Daniel Sigg and Dave Barker

LSC meeting, November 2003, Hanford

Outline

- DAQ timing measurements for the last 4 weeks
» LHO 4K
» LHO 2K
» LLO 4k
- Caesium clock based timing system
» Overview of instrumentation
» Status
» LLO problem identified and eliminated
» LHO resullts for all LVEs
- Summary

Histogram of the measured time difference between the GPS 1PPS and DAQ time stamp

Histogram of the measured time difference between the GPS 1PPS and DAQ time stamp

Histogram of the measured time difference between the GPS 1PPS and DAQ time stamp

Timing distribution system geometry

New subsystems:

1. Fixed Caesium clock for long term stability
2. Portable Rb clock for mobility
3. Optical fiber based distribution system to ensure centralized timing
4. GPS - Cs time comparators

Mid X

11/12/2003

End Y

Mid Y

Generators at VEAs

LIGO Timing distribution system components at MSR at LHO

LGO Timing distribution system components at MSR at LLO

LIGO Timing distribution system components at LVEA/Mid/End stations

CDS
MEDM
Interface

6 of these in LHO
and
LIGO/Caltech 3 of these in LLO

LIGO

Preferred portable Rubidium clock

Main Features:

- GPS with Rubidium clock
- Outputs of 10MHz, 1PPS, IRIG B, RS232
- Inputs of 1 PPS, IRIG-B, 10MHz
- Time Accuracy: $1 \mu \mathrm{~s}$ relative to UTC (std.) 50 ns relative to UTC (option)
- Frequency Accuracy: 2E-12
- Display of Time, Date, Status \& BIT
- 1-hour Rechargeable Battery Back-up
- Built In Test - Up to 97\%
- Operating Temperature: $-20^{\circ} \mathrm{C}$ to $+65^{\circ} \mathrm{C}$ $\left(71^{\circ} \mathrm{C}\right.$ for 30 min)
Holdover (no GPS): $1 \mu \mathrm{~s} / 24$ hours, $5 \mathrm{E}-11 / \mathrm{month}$
- Full MIL-STD Qualification for Mil.

Applications.

Typical Time Error in Holdover

$\ddot{0}$
GPS location : ACT $_{L}$ VEA $_{H} 1$.txt

Histogram of residual of the time difference between atomic and GPS clock after subtracting the 4 th order ploy fit prediction

GPS location: ACT $V_{L} A_{H}$ 1.txt

Residual [ns]

GPS location: ACT $\mathrm{VEA}_{H} 1$.txt

GPS location: ACT VEA 2. .txt

Histogram of residual of the time difference between atomic and GPS clock after subtracting the 4 th order ploy fit prediction

GPS location: ACT VEA $_{H}$ 2.txt

GPS location : ACT_MX_H2_.txt

Histogram of residual of the time difference between atomic and GPS clock after
subtracting the 4 th order ploy fit prediction
GPS location : ACT_MX_H2__.txt

GPS location : ACT_MY_H2_.txt

Histogram of residual of the time difference between atomic and GPS clock after subtracting the 4th order ploy fit prediction

GPS location : ACT_MY_H2_.txt

GPS location : ACT_EX_H1_.txt

Histogram of residual of the time difference between atomic and GPS clock after subtracting the 4th order ploy fit prediction

GPS location : ACT_EX_H1__.txt

subtracting the 4th order ploy tit prediction

Histogram of residual of the time difference between atomic and GPS clock after
subtracting the 4th order ploy fit prediction
GPS location : ACT_EY_H1__.txt

Summary

- DAQ timing measurements indicate acceptable DAQ timing performance at all LIGO LSCs
» Still some jumping during pre-run periods
- Caesium clock based timing system is successfully installed in record time
» LHO has a nearly full featured system
- Calibration, fiber delay measurements are post S3 activities
- System works without supervision
» LLO has new timing hardware installed
- Serius and hidden problem was identified via the help of the new system
- Administrative resistance inhibited pre S3 epics integration
- No trend generation for S3 in LLO
- Integration, calibration, fiber delay measurements are post S3 activities
- Timing looks good for S3 and the new timing system is a pleasure to work with

