Measuring linear and nonlinear couplings between channels

R. Balasubramanian Cardiff University

LSC Nov' 2003

Overview of Talk

- Frequency domain statistics
- 4 different algorithms/statistics used
 - Coherence
 - Phase Coupling
 - Amplitude Coupling
 - Bicoherence
- Computing false alarm probabilites
- Operational parameters
- Results

Coherence
$$c(f_1, f_2) = \frac{\sum_{i=1}^{N} \tilde{A}_i(f_1) \tilde{B}_i^*(f_2)}{\left[\sum_{i=1}^{N} |\tilde{A}_i(f_1)|^2 \sum_{i=1}^{N} |\tilde{B}_i(f_2)|^2\right]^{1/2}}$$

Amplitude Coupling
$$c(f_1, f_2) = \frac{\sum_{i=1}^{N} |A_i(f_1)B_i^*(f_2)|}{\left[\sum_{i=1}^{N} |\tilde{A}_i(f_1)|^2 \sum_{i=1}^{N} |\tilde{B}_i(f_2)|^2\right]^{1/2}}$$

Phase Coupling c

$$(f_1, f_2) = \sum_{i=1}^{N} \frac{\tilde{A}_i(f_1)\tilde{B}_i^*(f_2)}{|\tilde{A}_i(f_1)||\tilde{B}_i(f_2)|}$$

ar.

$$b(f_1, f_2) = \frac{\sum_{i=1}^{N} \tilde{A}_i(f_1) \tilde{B}_i(f_2) \tilde{B}_i(f_1 + f_2)}{\left[\sum_{i=1}^{N} |\tilde{A}_i(f_1) \tilde{B}(f_2)|^2 \sum_{i=1}^{N} |B_i(f_1 + f_2)|^2\right]^{1/2}}$$

Bicoherence

Probability distribution of the coherence statistic

Comparision of analytical and simulation distributions

Probablility of Amplitude Coupling statistics

Comparision of simulated and analytical distributions

Probabilty distribuions for the bicorence statistic

Comparision of analytical and simulation distributions

Implementation details

- All statistics implemented as monitors in GODCS
- Developed just before S3 and running currently
- Typically segments are 10 seconds long to get afreq resolution of 0.1 Hz
- Averages are carried out for N=32 or 64
- Statistically significant "events" are written the relevant tables in the MySQL database
- Operate at a false alarm rate of about 1.e-6
- Currently looking at results between seismometers and the "main" channel.

GEO Online Detector Characterization System

Results

- Have looked at and followed up only part of the results
- The various statistics are fairly consistent but also saw significant differences.
- Observe interesting coupling events between the microseismic noise and the line frequencies in the LSC channels
- Some of these lines correspond to calibration lines
- Coupling for these has been verified and explained (Martin/Josh). The optical gain has been observed to be coherent with the microseismic noise
- In the process of looking at other results. Bicoherence monitor generates a huge number of events. Still to understand the results.