

LIGO's continuing search for gravitational waves

Patrick Brady

University of Wisconsin-Milwaukee

LIGO Scientific Collaboration

LIGO Interferometers

LIGO is an interferometric detector

• Measure fractional change in arm length $h = \delta L/L$

» A laser is used to measure the relative lengths of two orthogonal cavities (or

As a wave passes, one arm stretches and the other shrinks

LIGO noise budget

 Three fundamental noise processes frame the frequence window of LIGO detectors – these are continuous random processes (almost Gaussian!)

Shaking of ground transfers through the suspension into movement of the test mirrors

LIGO-I

Recycling mirror
Laser

Beam splitter

Test-masses

» Non-gaussian noise bursts

» Dynamic calibration due to complicated control systems

Strong line resonances

Challenge of real LIGO data:

G040018-00-Z

1/13/2004

Caltech

Sources and our analysis strategy

- Compact binary systems
 - » Neutron star inspiral
 - » LIGO range =20Mpc, N< 1/(4yr)</p>
 - » Black hole inspiral/merger
 - » LIGO range=105Mpc, N<1/(2yr)</p>
- Spinning neutron stars
 - » LMXBs, known & unknown pulsars in our Galaxy
 - » Need months of integration time
- Neutron star birth
 - » Tumbling bar could be detectable to ~5Mpc (~1/3yr)
 - » Convection within Galaxy (~1/30yr)
- Stochastic background
 - » Big bang & other early universe
 - » Background of GW bursts

LSC Analysis Groups

- Inspiral analysis group
 - » Brady & Gonzalez
- Burst analysis group:
 - » Katsavounidis & Whitcomb
- Pulsar analysis group:
 - » Landry & Papa
- Stochastic analysis group
 - » Fritschel and Romano

Caltech

- » Weak and rare sources
- » Require optimal signal processing

equency f,

Computational challenge of optimal signal processing

- Optimal signal processing:
 - » Use filters which are tuned to the particular type of signal/source
- Rule of thumb:
 - » As signal complexity increases, number of different filters increases
 - » Attempt to analyze data in equivalent time to acquire it
- Examples:
 - » Compact binary inspiral depends on masses, spins, eccentricity, orientation: ~100,000 different filters for masses only, giving ~100 GFlop computing problem
 - » Phenomenological waveform from spinning neutron stars depends on sky location (Doppler shifts) and orientation: 1000's TFlop computing problem

•Challenge:

» Design *and* implement computationally efficient algorithms for filtering

Experience gained to date

G040018-00-Z

1/13/2004 **Caltech** 6

Inspiral search pipeline: a case study in LIGO data analysis

LIGO is sensitive to:

- » Gravitational waves from binary systems containing neutron stars & stellar mass black holes
- » Last several minutes of inspiral driven by GW emission

Neutron Star Binaries

- » Known to exist (Hulse-Taylor)
- » Waveform accurately modeled
- » LIGO range =20Mpc, N< 1/(4yr)</p>

NS/BH, BH/BH

- » New science: rates, dynamics of gravitational field, merger waves
- » LIGO range=105Mpc, N<1/(2yr)</p>

LIGO Optimal signal processing using a matched filter

GW Channel + simulated inspiral

Filter to suppress high/low freq

Template filters for inspiral waves

- Use template based matched filtering algorithm
- Search for non-spinning binaries
 - » 2.0 post-Newtonian waveforms

$$h(t) = (1Mpc/D) x [sin(a) h_s^{l} (t-t0) + cos(a) h_c^{l} (t-t0)]$$

- D: effective distance
- a: unknown phase
- Discrete set of templates labeled by I=(m1, m2)

Templates for S2 playground data set

- Search for inspiral signals with matched filtering
 - Templates: 2 pN stationary phase waveforms $1.0 < (m_1, m_2) < 3.0 M_{sun}$
 - Generate bank for each chunk with maximum 3% loss in signal-to-noise
 - Apply a low frequency cutoff of 100 Hz to data
 - 15 x 256 sec data segments overlapped by 128 sec
 - Median power spectral estimate using 15 segments

1/13/2004 Caltech 10

Generation of inspiral triggers

- Resample data to 4096 Hz and high pass at 90 Hz
- Compute median PSD for 15 segments of length 256 sec
- Matched filter templates to obtain signal-to-noise ρ
- If SNR ρ > ρ_∗ compute template based veto, χ²
 - » Small values of χ^2 indicate that ρ was accumulated in a manner consistent with an inspiral signal: If $\chi^2 < \chi^2$, then record trigger at maximum ρ
- Triggers are clustered within duration of each template
- Multiple templates can trigger at same time

Template based χ^2 test

- Break inspiral template into p pieces each of which should accumulate 1/p of the total SNR
- Construct

$$\chi^2 \propto \sum_{i=1}^8 (\rho_i - \rho/8)^2$$

 In Gaussian noise, this is distributed Chi squared (2p-2) degrees of freedom

Effectiveness of χ^2 veto

Figure: D. Brown

Nature and origin of inspiral triggers

Origin of striped triggers

Response of inspiral filters to glitch

Vetoing non-Gaussian noise bursts

- Construct vetoes to remove spurious inspiral triggers
 - » Some inspiral triggers are due to "obvious" instrumental glitches
 - » Look for explanation of spurious inspiral triggers in other channels
 - Glitch monitors on auxiliary interferometer channels
 - Physical environment monitoring channels

Tune vetoes on playground then apply to inspiral triggers full data set

Important lesson from S1 analysis

- Largest SNR trigger in S1 analysis – not a binary neutron star!
- S/N = 15.9, $\chi^2/\text{dof} = 2.2$
- (m1,m2) = (1.3, 1.1) Msun

- What caused this?
- Appears to be saturation of a photodiode

What have we learned about instrumental vetoes so far?

SegWizard: P. Shawhan

GU4UU 10-UU-Z

Apply data quality flags up front!

- » Operators provide first line of defence
- » Science mode data flagged as it is taken
- Extra information used in deciding what data to analyze:
 - » Exclude photodiode saturations
 - » Exclude data without calibration lines
 - » Exclude data with invalid timing
- Other lessons learned
 - » A cattle-guard at Livingston was identified as a problem following an enginering run
- But
 - » Still lack good instrumental vetoes
 - » A very difficult problem as expected

Target Population

- Simulate gravitational waves from a population of binary neutron stars
 - » Rate of binary inspirals expected to be proportional to star formation rate
 - » Population includes all galaxies out to maximum distance at SNR=5.5
- Inject signals from population into data from all three LIGO interferometers
 - » Inject in software
 - » Validated by hardware injections
- Determine efficiency, ε, for detection of simulated signals at threshold ρ*
 - » Efficiency $\varepsilon = N_{det} / N_{inj}$

Image: R. Powell

Trigger coincidence test

- Look for coincident triggers
 - » Present in all interferometers
 - » Coincident to within 11 ms between sites, 1 ms at the same site
 - » Each mass parameter in the template must be the same to within 0.03 solar masses.
 - » Compare distances measured at Livingston (D_I) and Hanford (D_H)

- Livingston and Hanford detectors are not exactly co-aligned
- So ratio of effective distance varies with sky location and polarization of source

Tuning the amplitude cut

 Errors in distance estimates expected to decrease with increasing SNR

$$|D_L - D_H|/D_L < \varepsilon/\rho_H + \kappa$$

ε and κ tunable constants

Remove amplitude cut to allow detection of these Milky Way events

Playground Results: Pipeline Efficiency

G040018-00-Z

1/13/2004 Caltech 23

Automating the analysis chain

LALdataFind

lalapps tmpltbank

- Search codes run standalone using Condor batch scheduler
 - » Directed Acyclic Graph describes workflow
- Use LALdataFind to locate data
 - » Interrogation of replica catalog maintained by LDR (S. Koranda)
- All search code in
 - » LAL and LALApps (many contributors)
- Inspiral code
 - » Generates triggers from each interferometer
- Coincidence stage of the search is part of the jobs we run
 - » Can add extra steps quite easily
- Code ready to run in LSC DataGrid
 - » Plan to do this in 2004

L1: lalapps_inspiral

L1-H1: lalapps_inspiral

L1-H1: lalapps_inca

Visualization

Data Quality

LALdataFind

lalapps tmpltbank

LALdataFind

lalapps_tmpltbank

G040018-00-Z

08/21/03

Concluding remarks

Challenges and status:

- » Non-Gaussian bursts: still need to get a handle on them
- » Resonances require care in data processing and interpretation: could improve
- » Calibration: understanding and implementation are well under way
- » Algorithm design side of (near) optimal signal processing is in hand
- » Still lots of implementation work to automate things
- » Distributed computing is addressing some of computing requirements

Implications for science:

- » Experience from science runs is speeding up analysis
- » New searches are getting under way
- » Future is bright for gravitational-wave detection with LIGO
- » Gravitational-wave astronomy is our ultimate challenge