

Current Status of the 40m Detuned RSE Prototype

Seiji Kawamura

2004 Aspen Winter Conference on Gravitational Waves Gravitational Wave Advanced Detector Workshops

Feb. 15 - 21, 2004

40m Team:

A. Weinstein, O. Miyakawa, M. Smith, J. Heefner, B. Abbott,S. Vass, R. Taylor, L. Goggin, F. Kawazoe, S. Sakata, and R. Ward

Objectives

- Develop lock acquisition procedure of detuned Resonant Sideband Extraction (RSE),
- Characterize noise mechanism,
- Verify optical spring effect,
- Develop DC readout scheme,
- etc.

for Advanced LIGO, LCGT, and other future GW detectors

Target Sensitivity of Advanced LIGO and 40m

LIGO-G040039-00-R

Important Achievement (1) Installation of FP Michelson

September, 2003

• Four TMs and BS: installed

Important Achievement (2) Modification of PSL

October 2003

- Stabilize frequency of light with Reference Cavity (RF) after Pre-Mode Cleaner (PMC) instead of before PMC
- Noise sources associated with PMC and steering optics after PMC should be suppressed!

[S.Kawamura, "Configuration Study of Pre-Mode Cleaner and Reference Cavity in the 40m PSL System, LIGO-T030149-00-R (2003)]

[C. Mow-Lowry, R. Abbott, and B. Abbott, "Frequency Stability Servo Modifications Made at the 40 meter Laboratory", LIGO-T030205-00D (2003)]

LIGO-G040039-00-R

Important Achievement (3) Improvement of PSL Noise

October 2003

- PSL noise improved above 1 kHz
- New Calibration Method (AOM as a reference) used

[S.Kawamura and O. Miyakawa, "Convenient and Reliable Method for Measuring Frequency Noise of the Pre-Stabilized Laser", LIGO-T030239-00-R (2003)]

LIGO-G040039-00-R

Important Achievement (4) Lock Acquisition of FP Michelson

November 2003

- FP Michelson locked
- Method similar to the one used for TAMA
- Interesting phenomena observed

[S. Kawamura and O. Miyakawa, "Polarity of Michelson Length Signal Obtained at the Symmetric Port In a Fabry-Perot Michelson Interferometer", LIGO-T030295-00-R (2004)]

Important Achievement (5) Spectrum of FP Michelson

December 2003

- Displacement spectrum obtained
- With all the whitening/dewhitening filters ON
- Convenient calibration method (Michelson midfringe locking) used

[S. Kawamura, O. Miyakawa, and S. Sakata, "Calibration of the 40m Fabry-Perot Michelson Interferometer", LIGO-T030287-00-R (2003)]

LIGO-G040039-00-R

Important Achievement (6) Installation of PRM and SEM

February 2004

 Power Recycling Mirror (PRM) and Signal Extraction Mirror (SEM) installed

Signal Extraction Method

Signal Extraction Matrix

Double Demodulation

- Double Demodulation used for I₊, I₋, and I_s
- Demodulation phases optimized to suppress DC and to maximize desired signal

[S.Kawamura, "Signal Extraction Matrix of the 40m Detuned RSE Prototype", LIGO-T040010-00-R (2004)]

Length Tolerances

- Acceptable cavity length deviations from the ideal points:
 - 6 cm for *I*_

3 mm for I_+

3 mm for $I_{\rm s}$

Example: Signa	I matrix with	<i>I</i> + deviation	of 1 cm
----------------	---------------	----------------------	---------

Port	Dem. Freq.	Dem. Phase	$L_{\!_+}$	L_{-}	<i>I</i> ₊	<u>I_</u>	I _s
SP	f_1	334	1	-7.6E-9	-1.2E-3	-4.1E-6	-2.3E-6
AP	f_2	230	-1.3E-9	1	3.0E-8	1.3E-3	-1.7E-8
SP	$f_1 imes f_2$	162,73	-6.5E-4	3.5E-4	1	-5.6E-2	1.3E-1
AP	$f_1 \times f_2$	173,218	1.5E-3	4.2E-4	-2.1	1	-2.4E-1
РО	$f_1 \times f_2$	329,153	1.1E-3	2.7E-3	2.6	-1.6E-1	1

S. Kawamura, "Signal Extraction Matrix of the 40m Detuned RSE Prototype", LIGO-T040010-00-R (2004)

Lock Acquisition of Detuned RSE

- Central part: not disturbed by lock status change of arm cavity
- Question: Not disturbed by flash of SBs or SBs of SBs in arms?
- Promising: TAMA using 3rd harmonic demodulation in PRFPMI

LIGO-G040039-00-R

Lock Acquisition of Central Part

Ideal Procedure: Lock one by one

- Find primary signal not disturbed by the other two DOFs
- Find secondary signal not disturbed by the residual DOF

LIGO-G040039-00-R

Quality of I+ Signal (dc=0, I+:Max)

LIGO-G040039-00-R

Dependence of I+ Signal on Demodulation Phases

Aspen 2004

Quality of I+ Signal (Symmetric, dc≠0)

Aspen 2004

Beat between f1 and Non-Resonant SB f3 (AM)

Hint: G. Heinzel at Garching 30m

Quality of I- Signal

See Movie

Hint: H. Grote at GEO

See Movie

Aspen 2004

Quality of Is Signal

Looking for Good Signal ...

Have tried the following, but not significant improvement...

- f1-dem, f2-dem
- For I+:

Single sideband f2, AM f2 NR pm, am, single sideband f3: (f2-f3)-dem, (f1+f3)-dem

• For I-, Is:

Signal divided by the following:

 $2{\times}f1\text{-dem},\,2{\times}f2\text{-dem},\,DDM$ with different dem phases, (f2-2 ${\times}f1)\text{-dem}$

We Should Try More ...

- Analyze error signal with one DOF locked
- Try more various signals including mechanical dither signal
- Develop quick acquisition method
- Tighten suspended optics rigidly with respect to local frame, then manually bring three DOFs near lock point to acquire lock?

Summary

- Lots of achievements; experiment on 40m going very fast and smoothly
- Almost ready to try lock acquisition
- Lock acquisition: not so easy
- Need more investigation for lock acquisition

Hope we succeed in locking detuned RSE very soon!