

OSEM Development UK Advanced LIGO project

Stuart Aston University of Birmingham for the UK Advanced LIGO Team LSC Livingston, March 2004

LIGO-G040064-00-K

Overview

• Requirements:

- Generic OSEM Requirements
- OSEM Noise Performance Requirements

• OSEM Development Concepts:

- Geometric based OSEMs
- Interferometer based OSEM
- Performance Summary
- Conclusions:
 - OSEM Recommendations

Generic OSEM Requirements

- Range:
 - 3mm (peak-peak) working range (1.06mm *rms*), incorporating:
 - ± 1mm operating range
 - $\pm \frac{1}{2}$ mm tolerance for relative positioning of OSEM and sensed mass
- Fit: (sensors must fit actuator)
 - Sense motion of mass through bore hole of coil former
 - Constraints (for the case of the TM quad) restrict layout envelope to 40mm (diameter) x 70mm (length), including connectors and mounts
- Vacuum Compatibility:
 - Sensor components must meet the vacuum compatibility requirements appropriate to an Advanced LIGO vacuum chamber
- Electrical Compatibility:
 - Sensor drive and output must be compatible with the specification of cables passing through the SEI system (ideally using LIGO cables)

- Sensitivity Requirements for Local Control OSEMs:
 - Assume Eddy current damping and ISC feedback, most stringent requirement is MC longitudinal = $1.72 \times 10^{-11} \text{m/JHz}^{-11}$
 - For more detail, see E040108-00-K
- Sensitivity Requirements for Global Control OSEMs:
 - − Science mode noise requirement about 10Hz:
 ≈ 1x10⁻¹⁰m/√Hz ⁻
 - This figure also encompasses:
 - Transverse horizontal sensors on all suspensions
 - Other, less critical, degrees of freedom on RM and MC
 - Note that almost half the OSEMs fit one or other of these categories

* Figures extracted from "Recommendation of a design for the OSEM sensors" document LIGO-E040108-00-K

OSEM Concept Development

- Geometric Sensors:
 - Prototype developed by C.C. Speake and S.M. Aston at the University of Birmingham
 - Parallel independent development undertaken by our collaborator N.A.
 Lockerbie at the University of Strathclyde

• Basic Operation:

- Use a reasonably collimated and strongly modulated light source
- High power IRLED (880nm) emitter (OP-50L)
- Beam passes through optical system which is partly mounted on an extension of the sensed mass
- Beam is incident on a split photodiode detector
- Detected photocurrents are demodulated to produce sum and difference signals:
 - Difference output provides useful displacement measurement read-out
 - Sum signal enables active intensity stabilisation of emitter output

OSEM Concept Development

• Geometric Sensor Prototype (University of Birmingham):

OSEM Concept Development

• Geometric Sensor Prototype (University of Strathclyde):

UK Advanced LIGO Team

LIGO-G040064-00-K

OSEM Concept Development

- Interferometric Sensor:
 - Development by C. Speake and S. Aston at the University of Birmingham
- Basic Operation:
 - Use a collimated laser diode light source
 - Low power (3mW) emitter (HL6314MG) at 635nm
 - 3 output interferometer has single element "bug-eye" pd's at each output
 - Polarising beam-splitter gives quadrature outputs for 2 ports
 - 3rd port output is 180⁰ out of phase (allows subtraction of dc offsets)
 - 3 outputs are subtracted in pairs (via 2 difference amplifiers) resulting in 2 dc corrected channels to be read-out
 - Signal processing allows the fringes to be counted as well as fractional fringe measurements to be made
 - Dynamic range limited by the coherence length of the laser diode

OSEM Concept Development

• Interferometric Sensor Prototype (University of Birmingham):

OSEM Development Performance

- Geometric Sensors:
 - − Shot noise limited performance of \leq 1.5x10⁻¹¹m/√Hz about 10Hz and essentially flat down to 1Hz.
 - But this result was <u>not</u> achievable over the whole working range!
 - Common suspect component of excess noise is the IRLED emitter
 - Significant risk that there are no other alternative high power, low noise and good beam quality devices available
- Interferometric Sensor:
 - Performance of $\leq 5x10^{-13}$ m/ \sqrt{Hz} about 10Hz is achievable without a high power source or any modulation scheme
 - Perceived risk in complexity of construction and laser diode noise performance and MTBF (device screening maybe required)

Conclusions

• OSEM Recommendations:

- We recommend the use of the interferometric design wherever high sensitivity is required together with basic (modified) initial LIGO OSEMs for global control and certain other locations
- Summary of Rationale:
 - Interferometric concept is the most secure approach to reaching the sensitivity requirement
 - Higher component cost partly offset by possible elimination of eddy current dampers