Proposed Control Room Figures of Merit for Pulsar Sensitivity

Keith Riles (University of Michigan)

LIGO Scientific Collaboration Meeting LIGO Livingston Observatory March 15-18, 2004

DMT Infrastructure to Exploit

- Real-time access to online data
- Graphical display:
 - Time histories (strip charts)
 - Spectral plots
- Web page summaries and plots
- Trend file output of selected FOM values
- Monitoring of the monitor

Proposed FOM's based on ideas suggested by pulsar group members

Strain sensitivity – Fixed time intervals

• Rescaled power spectral density for observation time T:

$$< h_0 > = 11.4 \sqrt{S_n(f_s)/T}$$

- Display $\langle h_0(f_s) \rangle$ over $f_s = 10-2000$ Hz for time intervals:
 - 1 day
 - Length of data run (e.g., 70 days for S3) ← Primary FOM1
 - 1 year
- Result: pulsar-relevant PSD (no change in shape)

Pulsar Figure of Merit 1 (cont.)

Figure 1 from S1 pulsar paper

Colored curves for actual S1 T_{obs} values

Black curves for 1 year at design

Dots are energy conservation limits on known pulsars

Time needed to meet energy conservation limit for known pulsars

• For pulsar with $f_s = 2f_{rot}$, spin-down dP/dt, moment of inertia I, and at distance r, energy conservation requires: (assuming all energy loss due to gravitational waves!)

$$h_{EC} = \frac{5.7 \times 10^{-24}}{[r/(1kpc)]} \sqrt{(\frac{f_s}{1 \text{ kHz}})(\frac{\dot{P}}{10^{-13}s/s})(\frac{I}{10^{15}g \cdot cm^2})}$$

• Observation time required to attain sensitivity to h_{EC}:

$$T = \frac{(11.4)^2 S_n(f_s)}{h_{EC}^2}$$

Pulsar Figure of Merit 2 (cont.)

For reference, at LIGO I design at ~ 60 Hz [$\sim 10^{-22}$ / sqrt(Hz)], testing energy conservation for the Crab requires $T_{EC} \sim 9$ days

Display an instantaneous frequencies series with T_{EC} vs f_s for discrete, known pulsars.

Provide summary web table of instantaneous T_{EC} values and recent averages

For selected pulsars, display time history of T_{EC} and write trend

Example: 12-hour strip chart of Crab T_{EC} (weeks) \leftarrow Primary FOM2

Astrophysically interesting

Experimentally challenging in the extreme: $f_s \sim 59.93 \text{ Hz}$

Ellipticity sensitivity – known and unknown pulsars

• For known pulsars, FOM1 converts to a pulsar ellipticity sensitivity:

$$<\epsilon> = (9.5 \times 10^{-6}) \left[\frac{r}{\text{kpc}} \right] \left[\frac{f_s}{\text{kHz}} \right]^{-2} \left[\frac{I}{10^{45} \text{g} \cdot \text{cm}^2} \right]^{-1} \left[\frac{< h_0 >}{10^{-23}} \right]$$

- Display graph and html table of $<\epsilon>$ for known pulsars for same time intervals as in FOM1 (e.g., 1 day, run duration, 1 year)
- Display generic curves of $<\epsilon>$ vs f_s for same time intervals assuming pulsar at fixed distance of 1 kpc (adds $1/f_s^2$ weight to PSD)

Primary FOM3: Graph of $<\epsilon>$ for known pulsars for run duration

Cumulative actual sensitivity

• At start of data run, monitor starts accumulating ideal sensitivities, using

$$< h_0(f_s) > = 11.4 [< S_h >_{cumulative}]^{1/2}$$

Where $\langle S_h(f_s) \rangle_{cumulative}$ is the cumulative weighted average of $\langle S_h \rangle$

- Display graph (smooth curve vs f_s)
- Display html table for known pulsars of cumulative values and energy-conservation limits

Pulsar Figure of Merit 4 (cont.)

Remarks:

- Useful for performance evaluation
- But not useful for real-time feedback
- Patrick warns me that history retention and keeping track of science mode vs common mode are painful
- Would not include as a primary FOM
- Lowest-priority FOM to implement

Summary

Three "primary" FOM's for (reasonably) prominent display:

(FOM1) Pulsar strain sensitivity for $(T_{obs} = data run)$

(FOM2) Time (weeks) to reach energy conservation limit for Crab

(FOM3) Ellipticity sensitivity to known pulsars ($T_{obs} = data run$)

We have a volunteer! -- Greg Mendell