Issues in charging research

• DC forces

LIGO

- Dynamic range of actuators
- Alignment issues

Reduction of charging

- Cleaning and handling
- Conductive coatings
 - Effects on thermal noise, absorption, thermal properties, etc

Causes of noise

- Markov processes
 - See R. Weiss, T960137-00-E
 - Measure correlation time on sapphire and silica with Kelvin probe
- Glitch events
 - Vetoes
 - Shielding

G040204-00-R

1

Noise from Markov process

 $S_{F}(f) = 2 <F^{2} > / (\pi \tau_{0}) (1/\tau_{0}^{2} + (2 \pi f)^{2}))$

Charge level

LIGO

- 10⁻¹⁰ C/m², typical low value (MSU)
- 10⁻⁷ C/m², typical high value after charging event (MSU)
- 10⁻⁴ C/m², typical value after rubbing (MIT)
- Assumed values
 - 1/10, ratio of charged area to uncharged
 - 1 m, distance between charged optic and ground
 - τ₀ > 1/f
- Results are encouraging, for small $\tau_{\rm 0}$
 - $S_{x}^{1/2}(2 \text{ Hz}) < 10^{-26} \text{ m/Hz}^{1/2} \text{ at } \tau_0 = 2 \text{ s}$
- Need better values for parameters
 - σ, charge density
 - A, charged area
 - τ_0 , correlation time biggest unknown

G040204-00-R