MOJ/VIRGD

Suspended Mirror control: Learning through Virgo Experience

E. Majorana - I.N.F.N. Pisa

Aspen GWAD February 16, 2004

Main elements of mirror suspension

The mechanics of SA suspension is designed to reach 10⁻¹⁸ m/Hz^{1/2} at 10 Hz (thermal noise)

- The SA filters off the seismic noise above 4 Hz
- Below 4 Hz the mirror moves at the SA resonances ≈ tens of μm
- ITF locking requires resonance damping

TOP: Sophisticated control system for the suspension chain

BOTTOM: Efficient mirror local control

Digital control std chain

CITF: Standard improvements...

More careful blending of noisy sensor error signals to avoid too small phase margins (Losurdo,Passuello)

> More careful diagonalization of sensors & seismic noise re-injection. Once the energy gets into the chain it is more diffucult to extract it.

e.g.: improvement of 30 mHz bump performed during CITF

1st overall result: blending position and acceleration signals is delicate matter of digital control design to prevent sensor/seismic noise re-injection

Inertial damping on inverted pendulum (CITF)

- Three d.o.f. damped
- rms translation ~ 1 μ m, rms rotation ~ 1 μ rad (over long periods)
- Typical relative motion of the mirrors : ~ 10 fringes/20 s $\Rightarrow d/dt(L2-L1) \sim 0.25 \text{ mm/s}$

Features of the mirror suspension control (& CITF→Virgo transition)

• Interferometer operation requires $dL \approx 10^{-12} m$ [Compensation Tidal strain over 3 km $dL \approx 10^{-3} m$

required control dynamic range $> 10^9$: need to split the actuation

• Longitudinal driving noise

operation locking force from the marionette (reference solution)

• Low frequency mirror control for fast re-alignment

larger local control bandwidth: marionette readout implemented

• Last stage pendulum oscillation during locking

few μ m/s: optical lever with image plane readout implemented

PART A: The suspension

PART B: Alignment Local Control

A-TIDES 1

Concept (exploiting the three stages of actuation):

force actuation at different levels along the suspension allows to reduce the direct control action on the mirror (Holloway,Losurdo et Al.)

Block diagram hierarchical control to reduce the dc force on the mirror

Re-allocation of the mirror low frequency correction (<70 mHz) to the IP

Main result (CITF): - reduction of the locking force on the mirror by a factor ~10 - max force during the test reduced from 23 mN to 1.6 mN

A-TIDES 4

Long term drifts are compensated through the Inverted Pendulum top stage FB

This is not the only advantage (CITF) !

Big forces on the mirror excite low frequency internal modes of the suspension

A "quieter" action on the mirror

2nd overall result: The locking correction force has to operate around zero

A-TIDES 6

Driving noise/std solution:

use the F7-marionette actuators after lock acquisition

Actuators noise: current status

BUT :

the switch of the control reaction mass **>** F7 actuators IS NOT EASY !

A-MARIO 2

Driving noise/Work in progress (a great help from simulation):

- Simulation of lock keeping from the marionette OK
- Simulation of lock keeping during reaction-mass → F7 control switch in progress

Driving noise/Backup solutions:

- Low noise electronics & related strategies under study
- Simulation of lock acquisition from F7 control switch to be done

3rd overall result: exploit the actual ITF simulation to design locking schemes

A-MARIO 3

CITF Angular local control of last suspension stage:

Mirror angle read-out (CCDcamera+Optical Lever), F7-marionette torque actuation

Main duty : prealign and allow to switch-on the ITF automatic alignment

Specs OK

- Good performance & accuracy (0.6-0.7 µrad RMS)
- Good dynamic range 5 10⁴

BUT:

4th overall result: larger angular control bandwidth required (3-5 Hz)

(CITF) Mirror read-out → F7-Marionette action

CITF longitudinal local control of last suspension stage:

5th overall result: mirror longitudinal damping seismic noise limited needed

B-LC 4

Last stage control upgrade designed

in the image plane
$$\Rightarrow \Delta x_2 = -2(D/L) \Delta z = -0.36 \Delta z$$

in the focal plane $\Rightarrow \Delta x_2 = 2 \cdot f \cdot \Delta \alpha = 0.4 \Delta \alpha$
 $\widetilde{X}_2 = \begin{cases} (f = 0.6 \text{ Hz}) \approx 10^{-7} \text{ m}/\sqrt{\text{Hz}} \\ (f = 10 \text{ Hz}) \approx 10^{-8} \text{ m}/\sqrt{\text{Hz}} \end{cases}$
Then,
 $\widetilde{Z} (0.6 \text{ Hz}) = \frac{\widetilde{X}_2}{0.36} \approx 3 \cdot 10^{-7} \text{ m}/\sqrt{\text{Hz}}$
 $\widetilde{\alpha} (10 \text{ Hz}) = \frac{\widetilde{X}_2}{0.4} \approx 2.5 \cdot 10^{-8} \text{ rad}/\sqrt{\text{Hz}}$

B-LC 6

Angular rms budget due to locking

Readout upgrade & microseism

New local controls read the marionette angle through a tilted mirror (10 deg) couples a θz (roll) resonance at 300 mHz to θy (yaw).

Roll is not controlled !!

A storm during run C1 caused an increase of the roll @300 mHz of about 100 times

Loss of lock !!

An optimistic comment:

We realized that the mirror was actually moving along a d.o.f. (always neglected). We had to patch the inertial damping & LC filters.

6th overall result: mirror suspension last stage control should provide 6 d.o.f. actuation

N arm (I) •LC only drives the mirror through the mationette •AA signals monitored (freise,loupias,majorana)

N arm (II) •AA drives the mirror through QPHD signals •LC marionette signals monitored

Automatic vs Local Alignment Control (before run C2): stored power fluctuations with the two FP cavities simultaneously locked

AA ON - LOCAL control OFF

AA OFF - LOCAL control OFF

B-LC 11

Conclusions (not too bad.....)

- blending position and acceleration signals is delicate matter of digital control design to prevent sensor/seismic noise re-injection (the suspension control "less inetrial", but with smaller residual RMS for Virgo crossing frequency 30 mHz → 70 mHz)
- the locking correction force has to operate around zero
- exploit the actual ITF simulation to design locking schemes
- 3-5 Hz angular control bandwidth required
- mirror longitudinal damping seismic noise limited needed
- mirror suspension last stage control should provide 6 d.o.f. Actuation (!!)