

·GC

LISA TECHNOLOGY PACKAGE

MAURICE TE PLATE EUROPEAN SPACE AGENCY ESA-ESTEC

LISA Pathfinder

- ESA's SMART-2 now renamed LISA Pathfinder
- Technology demonstrator mission in preparation for LISA.
- Payload:
 - ESA supplied LISA Technology Package
 - NASA supplied ST-7
- Launch in 2007

Purpose LISA pathfinder Demonstrate drag-free flying:

 Verify the performance of the gravitational reference sensors by optically monitoring the distance between two free floating test masses

LISA critical Technologies to be demonstrated by LPF

Gravitational reference sensors:

Test mass in a cage with capacitive sensors / actuators. The test mass is freely floating, subject only to gravitational forces, and the spacecraft shields and follows it (drag-free control).

- Low-noise μN thrusters:

These compensate all non-gravitational forces acting on the spacecraft.

Ultra-stable optical interferometry

Optical interferometer system

LTP interferometer is the diagnostic tool to continuously monitor the test masses in all operating modes by measuring:

- 1) X1-X2: Distance between T/M's
- 2) X1: Position T/M 1 w.r.t. OB
- 3) Tilt (X1): Tilt T/M 1 (Y and Z-axes)
- 4) Tilt (X1-X2): Differential Tilt T/M 1 and T/M 2

Interferometer Design

4 non-polarizing heterodyne Mach Zehnder interferometer systems on Zerodur slab of 200 X 200 mm²

X1-X2 path

Time dependence heterodyne signal:

$$\cos\varphi = \cos\left(2\pi f_{\rm het} t - \frac{2\pi x}{\lambda}\right)$$

Distance between one test mass and the optical bench

•

Provides the reference phase for the (X1-X2) and X1 measurements

Unequal Arm length ifo

Intentionally unequal path lengths \rightarrow Measure laser frequency fluctuations

Monitoring detectors

Laser Power Stabilization

Requirement for laser power stability driven by:

- Radiation pressure on test mass
- Direct coupling into phase measurement @ f_{het}

Radiation pressure

- Noise budget allocated to each interferometer noise source: $\delta x < 1 pm/ /\sqrt{Hz}$ between 1 mHz and 3 mHz
- Displacement fluctuation given $\delta x = \frac{2\delta P}{mc\omega^2}$
- Required power stability : 5 x 10⁻⁵ / √Hz between 1 mHz and 3 mHz, relaxing as f² up to 30 mHz

Coupling into phase measurement

• At the heterodyne frequency (a few KHz) the requirement is: $\widetilde{\mathbf{x}}$

$$\frac{\delta P}{P} < \frac{\eta}{2\sqrt{2}} \widetilde{\delta \varphi}$$

• Required power stability: 1.8 x 10⁻⁶ / \sqrt{Hz}

Conclusion: Power stabilization no major obstacle

Frequency stabilization

- Laser frequency fluctuations cause spurious phase fluctuations
- Between 3 mHz and 30 mHz, the requirement for frequency stability is:

$$\widetilde{\delta v_{\rm L}} < \frac{c}{2\pi\Delta l} \widetilde{\delta \varphi} = 28 \frac{\rm kHz}{\sqrt{\rm Hz}} \left/ \left[\frac{\Delta l}{1 \rm \, cm} \right] \right.$$

Frequency stabilization

- Factor 100 is needed for frequency stabilization
- Reference cavities or molecular references too complicated
- In stead unequal armlength auxilliary ifo ($\Delta L = 40$ cm) is used
- Two possible stabilization schemes:
 - Use feedback loop to actively stabilize the laser
 - Apply a **post-measurement correction**
- Selected B/L \rightarrow Active stabilization

·ect

Laser

TESAT Laser:
NPRO Nd:YAG
Laser Head (Nd:YAG crystal) space qualified
Output power : 1 W

Inertial sensor System

FEE shall drive the electrode's voltages to produce electrostatic sensing and force

CM (Caging mechanism) shall safely hold the test mass during launch and afterwards shall position it at the centre of the housing

CMS (charge management system): shall make sure the charge on the test mass is lower than the required level

1

· eesa

Inertial Sensor Overview

1

eesa

Electrode Housing

eesa

Caging Mechanism

• 0

Charge Management System

Needed for discharging the testmasses

Status Inertial Sensor

- Engineering Model level for the mechanical part and the FEE is being finalized.
- BB electronics for non critical electronical parts
- Manufacturing of all the mechanical inertial sensor H/W is finished.
- Intermediate vibration testing will be performed shortly to check the structural performances of the caging mechanism

Status Interferometer H/W

- Optical interferometer integration completed February 7th 2004
- Interferometer successfully shipped from RAL (UK) to ASG (Germany) February 8th 2004
- ASG currently finalizing the assembly of the complete LTP OB system.
- Completely assembled LTP OB system will be shipped to TNO-TPD (Netherlands) shortly
- Performance test campaign (including environmental testing) will be finalized end March
- Technical Readiness Demonstration

Optical Bench system during Alignment at RAL, UK

· eesa

eesa

Final step of each interferometer alignment

Completed interferometer including photodiodes

eesa

Ti Brackets for struts...

Ti Interface OB - IS

Inserts Ti-alloy

Zerodur Side slabs, dummy end mirrors and stiffening rods

First results LTP EM OB system

Glasgow pre-investigations

- During pre-investigations phase of the OB activity, UoG developed a simple rigid interferometer system, phasemeter and laser beam preparation bench
- Goal: Demonstrate the suitability of hydroxide catalysis bonding for the construction of the SMART2 and LISA optical benches precursor to LTP optical bench (RAL)

Glasgow pre-investigations

Optical bench in vacuum tank

Phasemeter

Laser beam preparation bench

Results pre-investigation tests **UoG**

• After extensive investigations, UoG demonstrated that the displacement stability of their simplified, but still very representative, OB system meets the LPF goal for almost the complete frequency range

Performance Tests planned on LTP OB system

- Displacement noise test: Requirement 10 pm/√Hz for frequencies between 3 mHz and 30 mHz
- Full stroke test (± 100 μ m)
- **Tilt Test**: Misalignments that are introduced shall be: 5-10-20-50-100-200-500-1000 µrad.

Vibration testing

- Qualification level Sine vibration test \rightarrow 25 g
- Qualification level Random vibr. Test \rightarrow
 - 20-100 Hz → +3 dB/oct
 - 100 Hz 400 Hz →0.1 g²/Hz between
 - 400-2000 Hz → -6 dB/oct

OB system with integrated dummy tests masses

Test adaptor for vibration tests

Thermal Cycling

- 5 thermal cycles from 0 °C and +40 °C
- Equilibrium time > 1hr
- Temp change rate < 1 °C/min
- Vacuum \rightarrow 1e-5 mbar

TNO test facility for thermal cycling

Performance Test Facilities

- TVC for performance testing completely qualified and commissioned
- Facility already successfully used for ESA's GAIA project

TNO TVC for performance test campaign

Time Schedule

- Optical bench activity:
 - Delivery integrated EM OB to TNO February 18th
 - Finish Performance test campaign March 31st
 - Finish of OB activity April 26nd

LTP implementation Phase

- Kick off \rightarrow Beginning 2004
- PDR \rightarrow August 2004
- CDR \rightarrow August 2005
- TRR \rightarrow January 2006
- FAR \rightarrow June 2006

End of presentation

Thermal I/F to S/C

· eesa

• 0

Thermal shield FM

• Needed thermal stability < 10^{-4} K/ \sqrt{Hz}

Modes of inertial sensor operation

- S/C follows one of the test masses.
 The other one is left freely floating
- Second test mass is controlled in only a few of its DOF
- S/C folows a linear combination of both test mass positions.