

OSEM sensor recommendation: requirements and decision process

K. A. Strain

04/05/2004

G040216-00-K

Contents

- How the main requirements arise
- Primary requirements assuming 2 sensor designs
 - high sensitivity design for key suspensions/ degrees of freedom
 - low sensitivity design elsewhere
- Other requirements

How the requirements arise

- Flowdown from Advanced LIGO Systems Design Requirements
 - via suspension DRD
 - total noise per suspension (evaluated at 10 Hz in science mode) figures from NAR based on latest models
 - OSEM sensor noise must not lead to an increase of more than 1% in this (noise power)
 - Groups of sensors (in one DOF) evaluated to set a noise limit 1/10th of amplitude
 - include effects of filtering at 10 Hz

Primary requirements (local control)

- Sensor noise at 10 Hz for OSEMS for
 - Local control on 6 DOF
 - grouped into
 - horizontal acting (long, yaw, pitch*)
 - horizontal transverse
 - vertical transverse (vert, roll, pitch)
 - Local control of 4 SUS types
 - TM, BS=FM, RM, MC
- Sensor range
 - we agreed to work with 3 mm range as a conservative starting point (more on this later)

* pitch control via horizontal actuators in quads is assumed Review April 2004 G040216-00-K

Primary requirements (local control, reaction chains)

- Sensor noise requirements much relaxed
 - no direct sensitivity to reaction chain motion
 - only via coupling through actuators
- Range requirement as per main suspensions

* pitch control via horizontal actuators in quads is assumed Review April 2004 G040216-00-K

Primary requirements (global control)

- Sensor noise low enough to allow
 - transfer function measurements/calibration of suspensions
 - some level of diagnostic of excess noise
 - no particular reason to do better than ~1e-10m/rtHz
- Sensor range
 - requirement (although TBD) on relative alignment of main and reaction chains will me *much* tighter than 3 mm pk-pk (to allow electrostatic and stronger electromagnetic actuators to operate with near-constant "force constant")
 - the 0.6 mm range of Initial LIGO OSEMs (or similar) probably adequate

* pitch control via horizontal actuators in quads is assumed Review April 2004 G040216-00-K

Relaxations: tolerating noisy sensors

- Control transfer
 - certain DOFs on TMs under interferometer control in science mode (turn down/off local controls)
 - long, yaw, pitch
 - no noise requirement during science mode
 - just "RMS" requirements for acquistion
- Eddy current damping
 - certain DOFs on TMs, BSs, FMs are able to be passively damped during science mode (at least)
 - vert, roll, pitch
 - requirement as above

Relaxations (continued)

- Feedback noise at 10 Hz can be less than sensor noise
 - reduce gain 10 to 15 dB in science mode (typically reduces rms velocity/acceleration of optic)
 - allow extra ~20 dB of noise filtering in science mode
 - all sensors can be up to 30 times noisier than basic requirement
 - note that changes to the suspension design will affect the estimate and TM suspensions are not yet fixed

Performance requirements assuming two sensor designs

- A: High sensitivity design requirements
 - limiting noise at 10 Hz
 - limiting control-band noise
 - important control band noise (assessed as *rms* velocity or acceleration) is the contribution in a ~1 Hz band around ~1 Hz [at lower frequencies the SEI noise dominates]
- B: Low sensitivity design "requirements"
 - aim for something needing ~ no development
 - sensor similar to Initial LIGO/ GEO /Hybrid OSEM
 - ~1e-10 m/rt Hz at 10 Hz
 - use wherever that is safe

Other OSEMS

- Transverse horizontal
 - all low sensitivity
- Reaction pendulums
 - all low sensitivity
- Global feedback OSEMs with sensors
 - all low sensitivity (also for reasons of fit)

Requirements table – noise at 10 Hz (m/rtHz)

SUS	MC	MC	RM	RM	ТМ	ТМ	BS/FM	BS/FM
DOF	L	V	L	V	L	V	L	V
No.	2	3	2	3	2	3	2	3
DRD	3.00E-18	3.00E-15	4.00E-17	2.00E-14	1.00E-20	1.00E-17	2.00E-18	2.00E-15
TR	3.70E-06	4.90E-04	6.10E-06	4.50E-04	2.10E-07	1.20E-04	9.40E-07	2.30E-03
1	5.73E-13	3.53E-12	4.64E-12	2.57E-11	3.37E-14	4.81E-14	1.50E-12	5.02E-13
2	1.72E-11	1.06E-10	1.39E-10	7.70E-10	1.01E-12	1.44E-12	4.51E-11	1.51E-11

- Shaded regions show requirements removed by switching to ISC feedback and (optionally, as examples) eddy current damping. Basic sensors are probably adequate in some of the cases marked (yellow).
- DRD documented, TR from Norna, 1 direct calculation, 2 allow factor 30 reduction in controller noise feedthrough from gain and better filtering than used to estimate TR.

Requirements table – noise at 10 Hz (m/rtHz)

SUS	MC	RM	ТМ	BS/FM	
DOF	TH	TH	TH	TH	
No,	1	1	1	1	
DRD	3.00E-15	2.00E-14	1.00E-17	2.00E-16	
TF	4.00E-06	6.00E-06	2.00E-07	1.00E-06	
1	7.50E-10	3.33E-09	5.00E-11	2.00E-10	
2	2.25E-08	1.00E-07	1.50E-09	6.00E-09	

- Basic sensors are adequate in all cases (yellow)
- DRD documented, TR from Norna, 1 direct calculation, 2 – allow factor 30 reduction in controller noise feedthrough from gain and better filtering than used to estimate TR.

Sensor types investigated

- Interferometric sensors
 - most obvious route to high sensitivity
- Geometric sensors
 - split-detectors, modulation/demodulation to reduce 1/f noise, optical amplification of the displacement signal, etc.
- Basic shadow sensors
 - like the designs employed in Initial LIGO and GEO 600

Interferometric sensors

- semiconductor diode laser (visible or NIR)
- polarisation scheme
- 3 outputs: two differences give quadrature fringe signals with mean about zero (lissajous figures)
- measured performance of benchtop mockup <5e-13m/rtHz at 10 Hz
- working range >3mm pkpk
- tilt working range ~ mrad pkpk
- can be miniaturized
- technical report follows

Advanced geometrical sensors

- high power NIR LED
- modulation/demoduation scheme (~10 kHz)
- split detector
- regulation of light output
- doubling prism can be added
- working range 2~3mm pkpk
- noise performance disappointing (suspect that OD50L emitter has problems, failed to find alternative)
- potentially 1~2 e-11 m/rtHz, but only demonstrated at null
- technical summary follows

Basic geometrical sensors

- like Initial LIGO OSEMs or Hybrid LIGO/GEO OSEMs
- IR LED and single detector
- range 0.6mm or more (pkpk)
- ~1 e-10 m/rtHz
- development required (materials of hybrid sensor, or geometry of Initial LIGO sensor)

Risk assessment table

sensitivity5e-132e-11 (but only at null) ?over whole range?range>3 mm2~3 mmThermalNo issueProbably OKCablesFineFine unless we regulate emitter with AC to stabilize (radiates noisy AC)Size Cylinder <40mm by <70 mmSmall risk *No riskReliabilityLaser (worse? Soak test?LED (better?)		Interferometer	Shadow/imaging	
range>3 mm2~3 mmThermalNo issueProbably OKCablesFineFineInlessCablesSize Cylinder <40mm by <70 mm	sensitivity	5e-13	2e-11 (but only at null) ?over whole range?	
ThermalNo issueProbably OKCablesFineFineunlesswe regulate emitter with AC to stabilize (radiates noisy AC)Size 	range	>3 mm	2~3 mm	
CablesFineFineFineunlesswe regulateSize CylinderSmall risk *No riskNo riskSize CylinderSmall risk *No riskNo riskReliabilityLaser (worse? Soak test?LED (better?)	Thermal	No issue	Probably OK	
Size Cylinder <40mm by <70 mmSmall risk *No riskReliabilityLaser (worse? Soak test?LED (better?)	Cables	Fine	Fine unless we regulate emitter with AC to stabilize (radiates noisy AC)	
Reliability Laser (worse? Soak LED (better?)	Size Cylinder <40mm by <70 mm	Small risk *	No risk	
redundancy?)	Reliability	Laser (worse? Soak test? 2 for redundancy?)	LED (better?)	

Proposal

- fit interferometric sensors in high sensitivity locations
 - removes the need for eddy current damping (makes it optional rather than mandatory)
- fit modified basic sensors everywhere else
 - low cost (development and production)

Other requirements considered

- alignment difficulty/adjustment requirements
- vacuum compatibility (number of materials requiring approval)
- electrical compatibility
- thermal compatibility
- compatibility with actuator (fit)
- magnetic compatibility

Please ask for detail/status on any of these