The Status of VIRGO

E. Tournefier for the Virgo Collaboration

GWADW 2004, Aspen

- From the CITF to VIRGO
- Commissioning of the Fabry-Perot cavities
- Next steps

LIGO-G040226-00-Z

The CITF commissioning

June 01-July 02: Central ITF (CITF) commissioning
 -> 5 engineering runs

EO, E1: Michelson E2, E3, E4: Recycled Michelson

From the CITF to VIRGO: upgrades

A lot of experience gained with the CITF

Problems detected -> several improvements have been prepared for VIRGO

Aug 02: Shutdown for the Virgo installation and upgrades

- > Install the Virgo mirrors
- > Connect the tubes and install the terminal towers
- > Change beam size, modulation frequency
- > Upgrade the Input mode cleaner
- > Upgrade the control of the suspensions
- Jul 03: end of installation
- Aug 03: start the commissioning

The Mirrors

- Coater VIRGO in a class 1 clean room, unique in the world (2.2*2.2*2.4 m)
- Coating features:
 - very low losses: scattering ~ 5 ppm, absorption ~ 1 ppm
 - Uniformity on large dimension:
 less than 10⁻³ variation on Ø 350 mm

The mirror suspensions

The superattenuator is expected to provide an attenuation of 10¹⁴ at 10 Hz

3 actuation points:

- Inertial damping of the Inverted Pendulum
- Local control of the marionnetta
- Damping of the mirror motion

Control of the top stage:

 Horizontal damping using Lvdt's and accelerometers (improved to reduce re-introduction of noise by Lvdt's)

Typical rms horizontal displacement of the top stage: $1\mu m$

LIGO-G040226-00-Z

Control of the vertical motion:

Important for Power Recycling mirror: it acts as a lens

Vertical control using Lvdt (new)

Tide control from the top stage:

 Tide control tested on CITF, to be implemented for Virgo: reallocate the locking force from the mirror to the top stage
 -> smaller force on mirror -> lower noise from actuator

Local control of the Marionetta and of the mirror:

- laser diode coupled to a camera or a PSD device: new on the Marionetta
- The angular readout is done from the marionetta (new) and the mirror
- The correction is sent to the marionetta
- -> typical rms angular motion of the mirror: 1 µrad (see E. Majorana's talk)

The injection system

Upgrades:

- Change laser: 10W -> 20 W
- Move the Mode Cleaner tower
- Suspend the mode cleaner mirror and install its local controls

)-G040226-00-Z

The detection system

- Upgrade of the photodiodes electronics for the new modulation frequency (6.25 MHz)
- Upgrade of the optical system for the VIRGO beam size
- Add of Faraday isolator after the output mode cleaner
- Add the readout of the bad polarisation

The suspended detection bench

Output mode cleaner filtering the dark fringe

The optical calibrator

Calibration needed to transform photodiode signal into real mirror displacement

Mirror displaced by radiation pressure (1.2W laser diode)

Need to have a good sensitivity before this system can be used

=> use mirror coils now (like for CITF) LIGO-G040226-00-Z

- Aug-Oct 03: alignment of the injection beam, the Beam Splitter, the FP cavities, and the detection bench
- Since Oct 03: North FP cavity commissioning

North FP cavity locking

- Alignment of the cavity
- Confront photodiode signals with simulation (SIESTA)

Lock of the FP cavity

• Use the linearized error signal: AC/DC

 $\Rightarrow~$ Time to act is increased by a factor 10 with the linearised signal $\Rightarrow~$ Force on mirror reduced

LIGO-G040226-00-Z

Lock of the FP cavity

Lock of the Output mode cleaner

Once the cavity is locked:

•

- Lock the output mode cleaner
- Control the cavity with the OMC output signal
- -> improves the sensitivity at high frequencies

First commissioning run: C1

3 days (november 14-17):

- North FP cavity locked with linearised signal
- Output mode cleaner locked

Calibration

Reconstruction of the sensitivity from the photodiode signal:

-> Measurement of the closed loop transfert function with white noise (injected from mirror coils)

LIGO-G040226-00-Z

C1 sensitivity

C1 run outcomes

- in normal conditions the lock of the cavity is very stable
- injection system stable: only 1 loss of lock (due to the earthquake)
- sensitive to large seismic noise <-> the inertial damping has been improved >> <->
- many realignments needed -> the automatic alignment is being implemented

- the sensitivity is limited by laser frequency noise

-> improve injection control

-> implement the second stage frequency stabilization

an acoustic test in the laser lab showed that a lot of the frequency noise is induced by acoustic noise
 improve the isolation

Sensitivity to large seismic noise

- The top stage Inertial Damping uses LVDTs (low frequency) and accelerometers
- Seismic noise is reintroduced by LVDTs -> new filter has been designed to reduce this effect (see E. Majorana's talk)
- => Now implemented on all the towers and works well

Injection system control

Input bench and mode cleaner damped with respect to the ground Laser frequency locked to mode cleaner length

LIGO-G040226-00-Z

Injection system control

Improvement of the controls of the injection

- Automatic alignment control gains reduced
- -> less sensitive to environmental noise

MC control length bandwidth reduced
> less noise injected at high frequency

Next steps

- The linear automatic alignment is implemented and under test:
 Angular control of the cavity mirrors using signals of quadrant photodiodes
 -> reduce the power fluctuations at low frequency
- Implement the laser frequency stabilization
- Study the mirrors hierachical control: lock from the marionetta in order to reduce the force on the mirror (and therefore the noise)
- And start the commissioning of the recombined Michelson

Conclusion

- Summer 2003: End of the Virgo sub-systems upgrade
- Since autumn 2003: Commissioning of Virgo
 - Commissioning of the two Fabry-Perot cavities
 - First run with one cavity
- Now:
 - Implementing the laser frequency stabilisation
 - Prepare the commissioning of the recombined Michelson
 - Next run: end of this week (feb 19-22) with the 2 FP cavities
- Futur:
 - Recombined Michelson: spring 2004
 - Recycled Michelson: end 2004
 - first scientific run: 2005?

LIGO-G040226-00-Z

Monday morning earthquake

- Earthquake happened in the Rat Island (Alaska) Nov/17 at 06:43:07 UTC: magnitude 7.3 Richter
- Travel time to Virgo is approx. 1hour
- Peak frequency of the seismic wave at Virgo is approx. 0.70mHz

Earthquake trigger the inertial damping security system of the injection bench suspension
 ⇒ loop was open and input mode-cleaner unlocked-00-Z

• Second stage of laser frequency stabilisation

