

### **Detuned RSE Spectrum**







# **Historical Review of RSE Experiment**



First operation of Detuned RSE with suspended mirrors.

# Why suspended?



# Japan 4m RSE



Detuned RSE Prototype interferometer

Built near TAMA site in 2001

500mW LASER, 40g light mirrors

Vacuum system: 3.4e-7 torr (w/o optics) 1.0e-6 torr (with optics)

# How to see the optical spring



# Quantum noise and transfer function



Peak appears at the frequency of the QND dip.

We can see this peak in our interferometer.

# **Setup of Japan 4m prototype RSE**



Laser:500mW, arm finesse:2000, RRSE : 80%

# **Setup of Japan 4m prototype RSE**



# Mass and the peak frequency

#### F=2000, $\phi = \pi/2$ -0.4, r=0.89



Using light masses, we can see the radiation pressure effect even with a not-high power laser.



4 degrees of freedomThird Harmonics Demodulation for ls

# **Signal Extraction Matrix**

### 9-180MHz (High-Freq method)

|            | Port | Demod.      | $L_+$  | $L_{-}$ | $\ell_+$ | $\ell_{-}$ | $\ell_s$ | norm. |
|------------|------|-------------|--------|---------|----------|------------|----------|-------|
| $L_+$      | SP   | $f_1$       | 1      | 0.000   | -0.001   | 0.000      | 0.000    | 1890  |
| $L_{-}$    | AP   | $f_2$       | 0      | 1       | 0        | 0.001      | 0        | -1500 |
| $\ell_+$   | SP   | $f_2 - f_1$ | -0.006 | -0.001  | 1        | -0.006     | -0.444   | 19.5  |
| $\ell_{-}$ | AP   | DDM         | 0.00   | 0.00    | -0.12    | 1          | 0.02     | 0.242 |
| $\ell_s$   | PO   | $f_2 - f_1$ | -0.002 | 0.000   | 0.036    | 0.024      | 1        | 245   |

#### 15-35MHz (Low-Freq method)

|            | Port | Demod. | $L_+$  | $L_{-}$ | $\ell_+$ | $\ell_{-}$ | $\ell_s$ | norm.  |
|------------|------|--------|--------|---------|----------|------------|----------|--------|
| $L_+$      | SP   | $f_1$  | 1      | 0.000   | -0.000   | 0.000      | -0.000   | 12600  |
| $L_{-}$    | AP   | $f_2$  | 0      | 1       | 0        | 0.001      | 0        | 894    |
| $\ell_+$   | SP   | DDM    | 0.000  | -0.001  | 1        | 0.495      | 0.698    | 2.81   |
| $\ell_{-}$ | AP   | DDM    | -0.000 | 0.002   | -0.009   | 1          | -0.015   | -0.622 |
| $\ell_s$   | PO   | DDM    | 0.002  | -0.002  | 0.033    | -0.894     | 1        | 15.1   |

#### We can also use Low-freq method with 15-30MHz if no PR (simple!).

### **<u>Control scheme of Detuned RSE</u>** ~ one-side SB lock



# Ascertain with OSA



# What happens with detuning? ~ ex. Arm cavity lock



# **Offset before locking**



# **RSE Lock** (L1, L2, l-, ls)



World's first lock of DRSE with suspended mirrors



Vi/Vo=AGH includes pendulum, servo, and RSE. → measure FPMI and RSE then take the ratio.

### **Measurement results**



## We were able to see the other peak at the beginning.



# **Conclusion**

We have locked Detuned RSE with suspended mirrors.We can hopefully say the optical spring is observed.

# To be improved

Precise measurement with high finesse cavities.
The peak can be at higher freq. with a different detune phase.
Offset problem of l- signal.

### What to do

Change the mirrors and retry in JapanDo it in Caltech 40m

