

Readout scheme

Contents

- •Short review of quantum noise
- •Input squeezing and homodyne detection
- •RF readout scheme (unbalanced sideband detection)
- •RF input squeezing
- Multi-phase detection
- •Summary and Discussion

Review of quantum noise

Both noise sources behave as sidebands to the classical light with or without π phase shift.

LIGO-G040243-00-Z

Vacuum fluctuation as SB

Laser light

Classical light Vacuum fluctuation

Where does vacuum come from?

LIGO-G040243-00-Z

Vacuum fluctuation from DP

Standard Quantum Limit

SQL is defined including this ponderomotive squeezing.

How to beat the SQL ? ~ QND techniques

(1)Input Squeezing

With non-linear optics

(2)Homodyne Detection

Changing readout phase

Reshape the ellipse of ponderomotive squeezing! LIGO-G040243-00-Z

Input Squeezing Experiment in ANU

•Successful squeezing by 7dB (R~2) in mega-hertz region

•Need more time for squeezing at ~100Hz LIGO-G040243-00-Z

Homodyne Detection

ζ : readout phase (homodyne phase)

Total quantum noise level

$$h_n = h_{SQL} \sqrt{\frac{(\kappa - \tan \zeta)^2 + 1}{2\kappa}}$$

Readout phase is fixed. Ellipse shape depends on signal freq.

Homodyne detection spectrum

No radiation pressure noise in narrow band.

Conventional way of homodyne detection

- •Additional beamsplitter would be troublesome.
- •Direct coupling of 30 noise might be a problem.

Several issues should be tested at Caltech 40m.

Problem of these QND techniques

1) Input Squeezing Only available at low frequencies so far.

2) Homodyne Detection, or DC readout Direct coupling of AC noise.

Isn't it possible to change the readout phase with conventional RF readout scheme?

RF modulation-demodulation scheme

What if there is only a single sideband ?

Readout phase can by demodulation phase.

Why demodulation phase ?

(K.Somiya, Phys. Rev. D vol.67, 2003)

A big problem: Vacuum at 2fm

(A.Buonanno, Y.Chen, and N.Mavalvala, Phys. Rev. D Vol.67, 2003)

Conventional shot noise

Vacuum at 2fm is dominant at some readout phase.

<u>RF Input Squeezing</u>

We can reduce heterodyne shot noise at a particular frequency.

LIGO-G040243-00-Z

Quantum noise spectrum with RF Squeezing

While the peak cannot exceed the SQL with heterodyne shot noise, QND is received with RF Squeezing !!

Noise spectrum with Multi-phase Detection

The SNR for compact binaries is improved with keeping 3000⁴³ sensitivity in broadband.

In the case of detuned configuration

Detuned RSE + Multi-phase Detection

Very broadband detuning !!

Summary

→ Multi-phase detection makes the sensitivity improved and broad.

Discussion

There are several conditions necessary to realize the RF squeezing:

(1) Asymmetry factor for $2f_m$ vacuum should be a multiple of π to reflect all the input vacuum from DP to DP.

→ This is satisfied with a control scheme for RSE.

- (2) Squeezing at 2fm+f and 2fm-f should be correlated (f: GWS freq.), or equivalently squeezed. (pointed out by Y.Chen)
 - → This might be difficult. Need more investigation.

Discussion

