Optical Coatings for Gravitational Wave Detection

Gregory Harry

Massachusetts Institute of Technology - On Behalf of the LIGO Science Collaboration -

> July 2, 2004 Optical Interference Coatings Conference – Tucson AZ

Gravitational Wave Detection

LIGO

- Gravitational waves predicted by Einstein
- Accelerating masses create ripples in space-time
- Need astronomical sized masses moving near speed of light to get detectable effect

Interferometer Sensitivity

LIGO

Coating Thermal Noise

$S_{F}(f) = 4 k_{B} TRe[Z]$

LIGO

- Fluctuation-Dissipation Theorem predicts noise from mechanical loss
- Proximity of coating to readout laser means thermal noise from coatings is directly measured
- Need low mechanical loss coatings while still preserving low optical loss, low scatter, reflectivity
- Initial LIGO has 40 layer silica/tantala dielectric coatings optimized for low optical absorption

Advanced LIGO Coating Requirements

Parameter	Requirement	Current Value
Loss Angle <i>\phi</i>	5 10 ⁻⁵	1.5 10 ⁻⁴
Optical Absorption	0.5 ppm	1 ppm
Scatter	2 ppm	20 ppm
Transmission	5 ppm	5.5 ppm

LIGO Coating Mechanical Loss Experiments

Direct Measurement of Thermal Noise Using Prototype Interferometer

- LIGO/Caltech's Thermal Noise Interferometer
- 1 cm long arm cavitites, 0.15 mm laser spot size
- Consistent with ~ 4 10⁻⁴ coating loss angle

frequency (Hz)

TNI Noise Curve - Fused Silica Mirrors

Measurement of Coating Mechanical Loss From Modal Q Values

- Test coatings deposited on silica substrates
- Normal modes (2 kHz to 50 kHz) decay monitored by interferometer/birefringence sensor.
- Coating loss inferred from modal Q and finite element analysis modelling of energy distribution
- Can examine many different coatings fairly quickly

Results

Coating Mechanical Loss

LIGO

Layers 30 60 2 30 30 30	Materials $\lambda/4 \ SiO_2 - \lambda/4 \ Ta_2O_5$ $\lambda/8 \ SiO_2 - \lambda/8 \ Ta_2O_5$ $\lambda/4 \ SiO_2 - \lambda/4 \ Ta_2O_5$ $\lambda/8 \ SiO_2 - 3\lambda/8 \ Ta_2O_5$ $\lambda/8 \ SiO_2 - \lambda/8 \ Ta_2O_5$ $\lambda/8 \ SiO_2 - \lambda/8 \ Ta_2O_5$ $\lambda/8 \ SiO_2 - \lambda/8 \ Ta_2O_5$ $\lambda/4 \ SiO_2 - \lambda/8 \ Ta_2O_5$	Loss Angle 2.7 10 ⁻⁴ 2.7 10 ⁻⁴ 2.7 10 ⁻⁴ 3.8 10 ⁻⁴ 1.7 10 ⁻⁴ 1.8 10 ⁻⁴	 Loss is caused by internal friction in materials, not by interface effects Differing layer thickness allow individual material loss angles to be determined φ_{Ta2O5} = 4.6 10⁻⁴, 2.8 10⁻⁴, 2.4 10⁻⁴ φ_{SiO2} = 0.2 10⁻⁴ φ_{AI2O3} = 0.1 10⁻⁴
30	doped with low $[TiO_2]$ $\lambda/4 SiO_2 - \lambda/4 Ta_2O_5$ doped with high $[TiO_2]$		$\varphi_{Al2O3} = 0.1 10^{-4}$ $\phi_{Nb2O5} = 6.6 10^{-4}$

Goal :
$$\phi_{coat} = 5 \ 10^{-5}$$

Future Plans

- Continue with TiO₂ doped Ta₂O₅ up to stability limit of TiO₂ films
- Examine other dopants in Ta₂O₅
- Examine other high index materials
- Improve stoichiometry of Ta₂O₅, correlate with optical absorption
- Examine relationship between annealing and mechanical loss

 Need more input and collaboration with material scientists and optical engineers

Optical Coatings for Gravitational Wave Detection

Gregory Harry

Massachusetts Institute of Technology - On Behalf of the LIGO Science Collaboration -

> July 2, 2004 Optical Interference Coatings Conference – Tucson AZ

Gravitational Wave Detection

LIGO

- Gravitational waves predicted by Einstein
- Accelerating masses create ripples in space-time
- Need astronomical sized masses moving near speed of light to get detectable effect

Coating Thermal Noise

- Mechanical loss causes thermal noise according to FDT
- Dielectric optical coating can have high mechanical loss compared to silica substrates

LIGO

- Thermal noise from the mirror coatings will set the sensitivity limit in Advanced LIGO
- There is not much data on internal friction in optical thin films, and not much theoretical guidance on reducing it
- The coating must also meet strict optical standards, sub ppm absorption, 2 ppm scatter, 5 ppm HR transmission

Proposed Advanced LIGO sensitivity

Results and Plans

Coating Mechanical Loss

LIGO

Layers	Materials	Loss Angle	 Loss is caused by internal friction in
30	$\lambda/4 \operatorname{SiO}_2 - \lambda/4 \operatorname{Ta}_2 \operatorname{O}_5$	2.7 10 ⁻⁴	materials. not by interface effects
60	$\lambda/8 \operatorname{SiO}_2 - \lambda/8 \operatorname{Ta}_2 O_5$	2.7 10 -4	Differing laver thickness allow
2	$\lambda/4 \operatorname{SiO}_2 - \lambda/4 \operatorname{Ta}_2 O_5$	2.7 10 ⁻⁴	individual material loss angles to be
30	$\lambda/8 \operatorname{SiO}_2 - 3\lambda/8 \operatorname{Ta}_2 O_5$	3.8 10 -4	determined
30	$3\lambda/8 \operatorname{SiO}_2 - \lambda/8 \operatorname{Ta}_2 \operatorname{O}_5$	1.7 10-4	$\phi_{Ta2O5} = 4.6 \ 10^{-4} \ , 2.8 \ 10^{-4} \ , 2.4 \ 10^{-4}$
30	$\lambda/4 \operatorname{SiO}_2 - \lambda/4 \operatorname{Ta}_2 \operatorname{O}_5$ doped with low [TiO ₂	1.8 10 ⁻⁴]	$ \phi_{SiO2} = 0.2 \ 10^{-4} \\ \phi_{AI2O3} = 0.1 \ 10^{-4} \\ \phi_{MMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMM$
30	$\lambda/4 \operatorname{SiO}_2 - \lambda/4 \operatorname{Ta}_2 \operatorname{O}_5$	1.6 10-4	$\varphi_{Nb2O5} = 0.070$
	aopea with high [110	2	Future Plans
			SMA/Virgo: further TiO₂-doped Ta₂O₂

Need more input and collaboration with material scientists and optical engineers

CSIRO: improving stoichiometry in Ta₂O₅ and effects of annealing