

Directional Stochastic Search: a Gravitational Wave Radiometer

Stefan Ballmer

Massachusetts Institute of Technology

LIGO Hanford Observatory

Stefan Ballmer, MIT / LIGO Hanford

G040339-00-0 1

The idea

- 2-site full-sky stochastic search is limited to lower frequency
 - higher frequencies (>~100Hz) average out in source position integration
- But the nearby universe is not isotropic:
 - Our galactic center
 - Nearest galaxy: M31 Andromeda
 - Virgo galaxy cluster
 - Voids
 - → Compare different sky patches!
- We can get source position information from:
 - Signal time delay between different sites (sidereal time dependent)
 - Sidereal variation of the antenna pattern
 - → Recipe: time-shift and cross-correlate!

Signal and Noise: Matched Filtering

• Use sidereal time & sky position dependent optimal filter:

LIGO

$$S = \int dt \int dt' s_{1}(t) s_{2}(t') Q_{t_{sidereal}\Omega}(t-t') \qquad s_{i} = n_{i} + h_{o} F_{i,t_{sidereal}}^{A}(\Omega)$$

$$\mu = \int dt_{sidereal} \int df \left| \tilde{h}_{0}(f) \right|^{2} \gamma_{t_{sidereal}\Omega}(f) \tilde{Q}_{t_{sidereal}\Omega}(f)$$

$$\sigma^{2} = \int dt_{sidereal} \int df \frac{1}{4} P_{1}(f) P_{2}(f) \left| \tilde{Q}_{t_{sidereal}\Omega}(f) \right|^{2}$$
where
$$\gamma_{t_{sidereal}\Omega}(f) = \sum_{A=+,\times} e^{i2\pi f \Omega \frac{\Delta \bar{\chi}(t_{sidereal})}{c}} F_{1,t_{sidereal}}^{A}(\Omega) F_{2,t_{sidereal}}^{A}(\Omega)$$

$$\tilde{Q}_{t_{sidereal}\Omega}(f) = \lambda \cdot \frac{\left| \tilde{h}_{0}(f) \right|^{2} \gamma_{t_{sidereal}\Omega}(f)}{P_{1}(f) P_{2}(f)}$$
Following notation of gr-qc/9710117
8/13/2004
Stefan Ballmer, MIT/LIGO Hanford
G040339-00-0_{3}

The antenna pattern DC part

• Look at frequency independent (geometric) part first:

$$\frac{\mu}{\sigma} \propto \gamma_{DC}^{\Omega} \coloneqq \left(\frac{1}{T_{sidereal}} \int dt \Big(F_{1,t}^{+}(\Omega)F_{2,t}^{+}(\Omega) + F_{1,t}^{\times}(\Omega)F_{2,t}^{\times}(\Omega)\Big)^{2}\right)^{1/2}$$

- Interpretation:
 - Power coupling loss relative to 2 permanently optimally aligned detectors
- How bad is it for existing interferometers?

LIGO

γ_{DC} for various targets

Object	LHO-LLO	LHO-VIRGO	LLO-VIRGO
Galactic center	0.189	0.256	0.251
M31 Andromeda	0.158	0.296	0.231
M81	0.064	0.465	0.114
M87 Virgo cluster	0.202	0.252	0.262

Coupling from other sky directions Antenna pattern, DC part

Radiometer DC antenna pattern for Virgo Cluster LIGO Hanford $\gamma_{\rm DC}$ 80 **LIGO** Livingston **M87 Virgo Cluster** 60 0.1540 Declination (deg) 20 0.1 0 0.05 -20 -40 0 -60 -80 0.05 5 20 10 15 Ω **Right Ascention (h)**

The antenna pattern for a flat spectrum

- Optimal filter (and therefore spatial resolution in the sky) depends on:
 - Detector power spectra (known)

$$\tilde{Q}_{t_{sidereal}\Omega}(f) = \lambda \cdot \frac{\left|\tilde{h}_0(f)\right|^2 \gamma_{t_{sidereal}\Omega}(f)}{P_1(f)P_2(f)}$$

Frequency content of expected signal (not known)

- Source modeling possible, but arguably the simplest assumption is a flat signal spectrum
 - For this case and assuming the LIGO SRD curve (shape only) we can calculate the full antenna pattern.

The antenna pattern for a flat spectrum

Stefan Ballmer, MIT / LIGO Hanford

The sensitivity

• Again for a flat signal spectrum we have

• For 2 interferometers at the current H1 sensitivity this is

$$h_0 = 3 \times 10^{-24} Hz^{-1/2} (SNR)^{1/2} (T/1yr)^{-1/4}$$

8/13/2004

The work to do

Implementation

- Almost identical to current Stochastic pipeline
 - Only modification: time-dependent overlap reduction function