

BurstMon

S.Klimenko, A.Sazonov

University of Florida

- motivation & documentation
- description & results
- noise stationarity for S2&S3
- summary & plans

- display performance of LIGO detectors to identify (new) problems during data taking runs (maintain high *data_for_analysis/data_on_tape* ratio)
- give a reference point for burst searches in terms of sensitivity and rate
- express detector performance in few burst FOMs
 - detector sensitivity: range or strain (preferably for astro-motivated burst sources)
 - > noise non-stationarity & non-Gaussianity
- latency
 - Short (few minutes) to be useful in control room

BurstMon

- **DMT monitor:** Measures hrss amplitude of injections at 50% of detection efficiency and produce burst FOMs.
- Method: The BurstMon performs real time injection of simulated bursts and detect them using burst analysis in wavelet domain.
- **Input:** single detector AS_Q channel & injection waveforms
- **Output:** dmtviewer & trends (min, sec)
 - detector sensitivity, hrss @ 50%
 - > noise variability (non-stationarity)
 - rates (complimentary to glitchMon)
- reference: <u>http://www.phys.ufl.edu/LIGO/burstmon/</u>
- LIGO Note: BurstMon, T040162-00-Z

BurstMon layout

- un-calibrated hrss for SG235 Hz injection:
 - estimated from average noise (like SensMon)
 - estimated with injections

S3 H1 data

• un-calibrated hrss for SG235 Hz injection:

- estimated from average noise
- estimated with injections

S3 data, H1

- S2 noise, Lazarus waveforms
- average over all sky
- Gives a detail picture of the detector performance in frequency band below 1.5 kHz

S.Klimenko, LSC, August 2004, G040393-00-Z

dmtviewer plots

Trends

• L1

S.Klimenko, LSC, August 2004, G040393-00-Z

H1

S.Klimenko, LSC, August 2004, G040393-00-Z

H2

S.Klimenko, LSC, August 2004, G040393-00-Z

S2 noise variability PSD

S.Klimenko, LSC, August 2004, G040393-00-Z

S3 noise non-stationarity

S.Klimenko, LSC, August 2004, G040393-00-Z

- BurstMon is a single interferometer burst detection engine implemented as a DMT monitor.
- It has real-time simulation pipeline for estimation of the detection efficiency for injected waveforms.
- Several FOMs are produced:
 - hrss @ 50% detection efficiency (for each type of waveforms)
 - > noise variability, rates,...
 - suggestions are welcome
- Plans
 - Finalize implementation issues
 - include real-time calibration as soon as available
 - some minor optimization (almost in real time)
 - commissioning run on regular basis
 - get ready for the next engineering run