Population synthesis and binary black hole merger rates

Richard O'Shaughnessy

Vicky Kalogera, Chris Belczynski

LSC

8-19-2004

LIGO-G040405-00-Z

BBH rate from Population Synthesis

- No known BBH sample \rightarrow rates from astrophysical theory
- Population synthesis:
 - Representative sample [masses, orbits]
 - Evolve, modulo (many!) parameters:
 - → Each fairly well-constrained
 - → vary 7 (=for Milky Way: SN kicks, CE efficiency, ..)
- Slow evaluations:
 - ~ 40 cpus

- Context: Previous PS calcualtions
 - Explore dependence, not likelihood

Astrophysical uncertainties: Supernovae

- What is remnant?
 - $M_{before} > M_c \rightarrow BH$
 - $M_{before} < M_c \rightarrow NS$
 - \dots we use $M_c = 22 M_o$
 - (e.g., Heger et al 2003, ...)
- Kicks imparted to remnant BH
 - Evidence for explosions in BH systems (XRB)
 - Zero BH kicks unlikely a priori

Population Synthesis:

Parameter dependence

Despite best constraints on models

→ broad range of compact object merger rates, even versus one parameter

Example:

Rate versus peak

SN kick strength

BH-BH rate distribution

Monte carlo:

• Method: Histogram

- sample points m_k
- find $r(m_k)$, bin

→ possible only with faster code!

Population Synthesis: Directed searches

- Targeted search
 - → speedup
 - 1) Fixed relative accuracy:

...run until BBH rate known to O(30%)

- 2) <u>Ignore systems</u>:
 - Runtime [when become irrelevant]
 - Initially [based on experience]
 - Early runs → what progenitors are likely always irrelevant (non-BBH)
 - <u>Later runs</u> → ignore?

Population Synthesis: Directed searches

• Practical optimization:

- Partition surface:
 - ...separate progenitors of BH-BH from others
 - ...plan to **ignore** all progenitors on one side of the cutoff
 [for **all** PS parameters]

→ search for optimal cutoff

→use early runs as reference

Speedup	Error probability	Error probability
(from just this cut)	(average)	(worst case)
x 10	0.14%	12%

Monte carlo:

• Method:

312 sample points m_k \rightarrow Find $r(m_k)$

Histogram

312 sample points:

...first rate distribution

Normalization:

$$\int \rho(r)d\log_{10}r = 1$$

1 merger/Myr/(Milky way)galaxy

Adequate sampling:

We have enough points to **fit** rate in 7d

Fit near limit of 30% uncertainty in each data point

• Well-resolved:

-Sensitive to low rates (> 10-8/yr/Milky Way)

-Low intrinsic errors

- Rates known to 30%
- Example: Purple curve expected result given rates = 10^{-6} always

Results:

- Bounded:
 - no evidence for very low rates (yet)

- Broad range:
 - > 100x uncertainty

no rates here...

• LIGO-I detection rates:

$$- M = 10 M_{o}$$

$$- D_{BH} = 100 \text{ Mpc}$$

$$R_{LIGO} = R\rho 4\pi D^3 / 3$$

... Then add more constraints

Example: NS-NS merger rate

NS-NS rate distribution

Poor constraint:

>O(50x) uncertain

NS-NS rate distribution

Poor constraint:

>O(50x) uncertain

LIGO rates:

- $M=1.4 M_{o}$
- D_{ns}= 20Mpc?, 350 Mpc? [network range, 1+1+1/2; **ref??**]

NS-NS rate distribution

• Binary pulsar sample:

4 in our galaxy[B1913, B1534, J0737, J1756]

Selection effects

→ *Likelihood* distribution for NS-NS merger rate

[Kalogera, Kim, Lorimer ApJ **584** 985 : astro-ph/0207408]

...empirical rate > prior rate

NS-NS rate as constraint: method

 $count(B) = \sum_{k} \Theta(r_b(m_k) \in B) \frac{p_n(r_n(m_k))}{const}$

→ **Histogram** of BBH rate

binary NS rate:

BBH distribution II

• Result: (preliminary)
Similar

Reason:

 NS-NS and BH-BH rates not strongly
 correlated

BBH distribution: Sampling

• Sampling problem:

...few models known with such high rates!

Summary and future directions

Summary

- BBH rate distribution from a priori PS...
- (preliminary) BBH distribution from NS-NS
- ... proof of principle for further similar work

Future directions

- better sampling (of course!)
 - ...check high-rate tail of NS-NS
- fit rate functions?
- distributions [not flat] for parameters (e.g., kicks)
- more constraints(e.g, SN rate, XRBs, NS+WD binaries, ...)

LIGO detection rate distribution?

Beware:

our result is for the merger rate, **not** the LIGO detection rate

→ black holes are not all of one mass

Can reconstruct the LIGO detection rate (but haven't yet)

• Pick N stellar systems from orbital parameter distributions (m1,m2=q*m1,a,e):

• Pick N stellar systems from orbital parameter distributions (m1,m2=q*m1,a,e):

Speedup (example):

Only pick N

high-mass

systems (m1, m2 > 4)...

Corresponds to a larger effective population size N_{eff}

- Pick N stellar systems
- Follow them in time

evolution depends on unknown parameters – including

```
-common-envelope efficiency (α ∈ [0,1])
-wind strength (w ∈ [0,1])
-companion mass ratio distribution (r ∈ [0,3])
-bimodal kick distribution (v1 ∈ [0,200], v2 ∈ [200,100], weight ∈ [0,1])
-mass loss during nonconservative mass transfer (f<sub>a</sub> ∈ [0,1])
```

...and others we do not vary yet (e.g. metallicity)

- Pick N stellar systems
- Follow them in time
- Place them uniformly in time over T=10Gyr

- Pick N stellar systems
- Follow them in time
- Place them uniformly in time over T=10Gyr
- Find total number of mergers (n)
- Calculate physical (average) merger rate R

$$R = \frac{n}{T} \frac{N_g}{N_{eff}}$$

where N_g is the number of stellar systems <u>born</u> in the milky way (e.g. found using some normalization *consistent* with the model parameters)

PS: Parameter problems

Survey: Constraining BH rate using predictions for NS rate (II)

• Explicit formula:

$$A_n(m) = \int d\overline{m} \delta(r_n(\overline{m}) - r_n(m))$$

$$p_m(m) = \frac{p_n(r_n(m))}{A_n(m)}$$

$$p_b(R_b) = \int d\overline{m} p_m(\overline{m}) \delta(R_b - r_b(\overline{m}))$$

Key

 $r_n(m)$ rate of binary NS merger for model m $r_b(m)$ $p_n(r)dr$ probability for binary NS rate to be in [r,r+dr]

Accumulating data: Results

NS-NS runs

Simulations	Merging NS-NS (per sim)
~ 488	10
~ 130	100

BH-BH runs

211 211 1 47112	
Simulations	Merging BH-BH
~ 312	10

Accumulating data: "Focused" runs

• Motivation:

- 1. Most progenitors are *not* progenitors of NS-NS binaries (or BH-BH binaries)
- 2. Many progenitors *cannot* produce these binaries, *independent* of model parameters and random events
- <u>Idea</u>: "partitions" which reject irrelevant objects (=which can't make a *particular* class of event)

• <u>Examples</u>:

- Mass cutoff (m1, m2>4)
- Can search for additional, better ones (e.g. correlated in m1, m2, a, e)...with some "training" data

Accumulating data: "Focused" runs

NS runs

Type	Prob
NS-NS	0.987
All other	0.088

BH runs

Type	Prob
BH-BH	0.9986
NS-NS	0.0215