

Hanford 4km Recent improvements and currently limiting noise sources

Stefan Ballmer Massachusetts Institute of Technology LIGO Hanford Observatory

08/24/2004

Stefan Ballmer, MIT / LIGO Hanford

G040430-00-I 1

Improvements since S3

Improvements below 100Hz

Eliminated noise sources:

- Auxiliary loops coupling
 - Coupling correction
 - High loop gain in auxiliary loops
- Non-linearity in mixer due to 2-omega
 - Additional notches in antisymmetric port photodiodes

Auxiliary loops coupling correction

Auxiliary loops high bandwidth

- This factor of 40 allowed us to
 - Back off cut-off filters
 - Increase bandwidth of those loops
- The higher gain reduced the loop's error signal and thus reduced the up conversion

Stefan Ballmer, MIT / LIGO Hanford

G040430-00-I 5

2-omega at antisymmetric port

- At AS port: Light dominated by sidebands
 - Beat at 49MHz is dominant RF signal
 - Anticipated in RF photodiode design, but notch was not deep enough
 - Non-linear upconversion in mixer

Limiting noise below 100Hz Now

And how to fix them

- Actuation electronics
 - Coil driver modification (passive filter at output) in preparation
- Auxiliary loops (MICH_CTRL / PRC_CTRL)
 - Sqrt(2) improvement easy with additional diode
 - Other approaches possible (use reflected signal)
- SRD thermal noise prediction was conservative

Stefan Ballmer, MIT / LIGO Hanford

G040430-00-I 8

08/24/2004

Limiting noise, whole band Now

