Optical Coatings for Gravitational Wave Detection

Gregory Harry

Massachusetts Institute of Technology - On Behalf of the LIGO Science Collaboration -

> August 4, 2004 The International Symposium on Optical Science and Technology Denver CO

Gravitational Wave Detection

LIGO

- Gravitational waves predicted by Einstein
- Accelerating masses create ripples in space-time
- Need astronomical sized masses moving near speed of light to get detectable effect

- Two sites in the US, Louisiana and Washington
- Michelson interferometers with Fabry-Perot arms Recycling
- Whole optical path enclosed in vacuum
- Sensitive to strains around 10⁻²¹

End Test

Interferometer Sensitivity

LIGO

- Measured sensitivity of initial LIGO 1/2004
- Nearing design goal
- Hanford 4 km within a factor of 2 near 100 Hz

Total Thermal Noise

²⁾ Substrate Thermal Noise LIGO-G040434-00-R

 10^{3}

Coating Thermal Noise

Fluctuation-Dissipation Theorem

LIGO

 $S_F(f) = 4 k_B T Re[Z]$

- Fluctuation-Dissipation Theorem predicts noise from mechanical loss
- Proximity of coating to readout laser means thermal noise from coatings is directly measured
- Initial LIGO has 40 layer silica/tantala dielectric coatings optimized for low optical absorption

 $S_x(f) = 2 k_B T / (\pi^{3/2} f w Y) (\phi + d / (\pi^{1/2} w) (Y / Y_{perp} \phi_{perp} + Y_{para} / Y \phi_{para})$

LIGO Coating Mechanical Loss Experiments

Results of Q Measurements

Coating Mechanical Loss

Layers	Materials	Loss Angle	• Loss is caused by internal friction in
30	^a λ/4 SiO ₂ - λ/4 Ta ₂ O ₅	2.7 10-4	materials, not by interface effects
60	$a\lambda/8 SiO_2 - \lambda/8 Ta_2O_5$	2.7 10 ⁻⁴	Differing laver thickness allow
2	$a\lambda/4$ SiO ₂ – $\lambda/4$ Ta ₂ O ₅	2.7 10 ⁻⁴	individual material loss angles to be
30	^a λ/8 SiO ₂ – 3λ/8 Ta ₂ O ₅	3.8 10 ⁻⁴	determined
30	$a_3\lambda/8 SiO_2 - \lambda/8 Ta_2O_5$	1.7 10-4	$\phi_{Ta2O5} = 4.6 \ 10^{-4}$
30	$b\lambda/4$ SiO ₂ – $\lambda/4$ Ta ₂ O ₅	3.1 10-4	$\phi_{SiO2} = 0.2 \ 10^{-4}$
30	$^{\circ}\lambda/4$ SiO ₂ – $\lambda/4$ Ta ₂ O ₅	4.1 10 -4	$\phi_{AI2O3} = 0.1 10^4$
30	$d\lambda/4 SiO_2 - \lambda/4 Ta_2O_5$	5.3 10 ⁻⁴	$\phi_{Nb2O5} = 6.6 10^{-4}$
30	$b\lambda/4$ SiO ₂ – $\lambda/4$ Nb ₂ O ₅	2.8 10 ⁻⁴	
43	$e \lambda/4 AI_2 O_3 - \lambda/4 Ta_2 O_5$	2.9 10 -4	$Goal: \phi = 5.10^{-5}$
			$\varphi_{coat} - \varphi_{roat}$

^a LMA/Virgo, Lyon, France

LIGO

^b MLD Technologies, Mountain View, CA

^c CSIRO Telecommunications and Industrial Physics, Sydney, Australia

^d Research-Electro Optics, Boulder, CO

^e General Optics (now WavePrecision, Inc) Moorpark, CA

LIGO Frequency Dependence of Coating Loss

- Evidence of frequency dependence of coating mechanical loss
- Coating loss lower at lower frequencies, so in LIGO's favor
- Primarily in SiO₂
- Frequency dependence known in bulk silica
- Results rely on small number of thin sample modes

30 λ/8 tantala 3λ/8 silica

 $\phi_{Ta2O5} = (4.9 + -0.4) \ 10^{-5} - (1.8 + -2.5) \ 10^{-10} \\ \phi_{SiO2} = (2.7 + -5.7) \ 10^{-5} + (2.5 + -0.3) \ 10^{-9}$

- LIGO/Caltech's Thermal Noise Interferometer
- 1 cm long arm cavitites, 0.15 mm laser spot size
- Consistent with ~ 4 10⁻⁴ coating loss angle

LIGO

Advanced LIGO Coating Requirements

LIGO

Need to develop low thermal noise coating without sacrificing optical performance.

Parameter	Requirement	Current Value
Loss Angle <i>\phi</i>	5 10 -5	1.5 10 ^{-4 a}
Optical Absorption	0.5 ppm	1 ppm ^a
Scatter	2 ppm	20 ppm ^b
Thickness Uniform	ity 10 ⁻³	8 10 ^{-3 b}
Transmission	5 ppm	5.5 ppm ^b
Transmission Matc	hing 5 10 ⁻³	5 10 ^{-3 b}

Current values are from ^a small laboratory samples ^b installed optics in initial LIGO interferometers

No single sample has demonstrated all values.

Titania Dopant in Tantala

Work done in collaboration with LMA/Virgo in Lyon, France as part of advanced LIGO coating research

 $\lambda/4 \operatorname{SiO}_2 - \lambda/4 \operatorname{Ta}_2 \operatorname{O}_5 \operatorname{Coatings}$ with TiO₂ dopant

Dopant Conc.	Loss Angle	
None	2.7 10 ⁻⁴	
Low	1.8 10 ⁻⁴	
Medium	1.6 10 ⁻⁴	
High	?	

Increasing dopant concentration reduces mechanical loss

- How far can this effect be pushed?
- Is there a better dopant?

LIGO

• Will this compromise optical performance?

LIGO Secondary Ion-beam Bombardment

Work done in collaboration with CSIRO in Sydney, Australia as part of advanced LIGO coating research

 $\lambda/4 \operatorname{SiO}_2 - \lambda/4 \operatorname{Ta}_2 \operatorname{O}_5 \operatorname{Coatings}$

Mode	Øcoat		
	Grid 1	Grid 2	
7	4.1 10 ⁻⁴	3.2 10 ⁻⁴	
8	4.2 10 ⁻⁴	3.1 10 ⁻⁴	
9	5.0 10⁻⁴	4.0 10 ⁻⁴	
10	4.1 10 ⁻⁴	3.5 10 ⁻⁴	
12	4.4 10 ⁻⁴	2.3 10 ⁻⁴	

Grid was adjusted from 1 to 2 to increase uniformity

- How far can this effect be pushed?
- Will this compromise optical performance?

Future Plans

- Continue with TiO₂ doped Ta₂O₅ up to stability limit of TiO₂ films
- Examine other dopants in Ta₂O₅
- Examine other high index materials
- Improve stoichiometry of Ta₂O₅, correlate with optical absorption
- Examine relationship between annealing and mechanical loss

 Need more input and collaboration with material scientists and optical engineers