

Supported by the National Science Foundation http://www.ligo.caltech.edu

Gregory Mendell LIGO Hanford Observatory

The Neutron Star Idea

•Chandrasekhar 1931: white dwarf stars will collapse if M > 1.4 solar masses. Then what?

•Chadwick 1932: discovers the neutron.

•Landau 1932: suggests stars have neutron cores.

•Oppenheimer & Volkoff 1939: work out NS models.

•Baade & Zwicky 1934: suggest SN form NS.

(http://www.jb.man.ac.uk/
~pulsar/tutorial/tut/tut.
 html; Jodrell Bank
 Tutorial)

SN 1987A

http://www.aao.gov.au/images/captions/aat050.html
Anglo-Australian Observatory, photograph by David Malin.

© Anglo-Australian Observatory

Discovery of Pulsars

LIGO

- Bell notes "scruff" on chart in 1967.
- Close up reveals the first pulsar (pulsating radio source) with P = 1.337 s.
- Rises & sets with the stars: source is extraterrestrial.
- LGM? 🍟
- More pulsars discovered indicating pulsars are natural phenomena.
- Hewish, wins 1974 Nobel Prize.

Figure 2: Discovery observations of the first pulsar. (a) The first recording of PSR 1919+21; the signal resembled the radio interference also seen on this chart. (b) Fast chart recording showing individual pulses as downward deflections of the trace. From Lyne & Graham-Smith 1990 [23].

www.jb.man.ac.uk/~pulsar/tutorial/tut/node3.html#SECTION000120000000000000 A. G. Lyne and F. G. Smith. Pulsar Astronomy. Cambridge University Press, 1990.

•From the Sung-shih

(Chinese Astronomical Treatise): "On the 1st year of the Chi-ho reign period, 5th month, chi-chou (day) [1054 AD], a guest star appeared...south-east of Tian-kuan [Aldebaran].(http://super.colorado.edu/~a str1020/sung.html)

•Pacini 1967: neutron stars power the crab nebula

• Gold 1968: pulsars are rotating neutron stars.

•orbital motion

•oscillation

•rotation

Pulsars = Neutron Stars

http://antwrp.gsfc.nasa.gov/apod/ap991122.html Crab Nebula: FORS Team, 8.2-meter VLT, ESO

Pulsars Seen and Heard

Play Me Play Me Q Q Q CVela Pulsar) http://www.jb.m an.ac.uk/~pulsa r/Education/Sou nds/sounds.html Jodrell Bank

LIGO

Observatory,

Dept. of Physics & Astronomy,

The University of Manchester

http://www.noao.edu/image_gallery/html/im0565.html

Crab Pulsar: N.A.Sharp/NOAO/AURA/NSF

Why Neutron

Stars?

Masses ~ 1.4 Solar Masses

- Fastest pulsar spins 642 times per seconds; R < 74 km
- Thermal observations and theory suggest R ~ 5-15 km

The back of the envelope please...

Don't take this the wrong way

1.4 Solar Masses $1.4(1.99 \times 10^{33} \text{ g})$

10 km Sphere $4/3\pi(10^6 \text{ cm})^{-3}$

Average density = 6.7×10^{14} g/cm ³

Mass neutron $1.67 \times 10^{-24} \text{ g}$

Volume neutron $4/3 \pi (10^{-13} \text{ cm})^3$

 $= 4.0 \times 10^{14}$ g/cm³ (billion tons/teaspoon)

... but parts of you are as dense as a neutron star.

More on Pulsars

Cosmic lighthouses with terragauss magnetic fields !

D. Page http://www.astroscu.unam.mx/neutrones/home.html

http://online.itp.ucsb.edu/online/neustars00rmode/kaspi/oh
/05.html; Vicky Kaspi McGill University, Montreal Canada

http://astrosun2.astro.cornell.edu/academics/courses/astro 201/pulsar_graph.htm

What else is seen?

http://www.astroscu.unam.mx/neutrones/home.html

http://www.jb.man.ac.uk/~pulsar/tutorial/tut/tut.html

Now it gets interesting...

•Fermi Temp = 10^{12} K

•NS born at 10¹¹ K, cools below 10⁹ K within a year; BCS superfluids form.

•Cools to 10⁶ K over 10⁷ K yrs.

•NS are compact "cold" degenerate objects; GR & QM required to understand.

D. Page http://www.astroscu.unam.mx/n eutrones/home.html

...and strange...

http://chandra.harvard.edu/resources/illustrations/ neutronstars_4.html

NASA/CXC/SAO

NORMAN K. GLENDENNING Nuclear Science Division and Institute for Nuclear and Particle Astrophysics Lawrence Berkeley Laboratory University of California Berkeley, California 94720

Strange Stars in the News

BBCN	1EWS	BBC	NEWS SPORT WEATHER	VICE A-Z INDEX	
Front Page World	You are in: Sci/Tech Wednesday, 10 April, 2002, 23:26 GMT 00:26 UK	BBCN	IEWS WORLD EDITION		
UK	Quark stars point to new	Name Front Dama	You are in: Science/Nature		
UK Politics	matter	News Front Page	News Front Page Friday, 22 November, 2002, 14:39 GMT		
Business Sci/Tech	Did qu			ark matter strike Earth?	
Health		77 3.	By Dr David Whitehouse		
Education		Africa	BBC News Online science editor		
Talking Point	king Point		bbe news online science editor		
In Depth		Asia-Pacific	Asia-Pacific A group of researchers have identified two seismic		
AudioVideo		Europe	arope events that they think provide the first evidence of a		
Contract Participation		Middle East	ist previously undetected form of matter passing through		
B B C SPORT		South Asia	the Earth.		
B B C Weather		UK			
	DV 110FC F 27FA be size just 11 has served and terrorestore	Business	The so-called strange quark	66	
SERVICES P	profile mean it cannot be a neutron star	ScienceMatum	matter is so dense that a	We can't prove that this	
Daily E-mail	<u> </u>	Technology	piece the size of a human	was strange quark	
Mohiles/PDAs	By Dishard Plask	Health	cell would weigh a tonne.	matter, but that is the	
modicari bria	By RICHARD BIACK		The true excepts under study	only explanation that has	
Feedback t	BBC science correspondent	Talking Point	The two events under study	been offered so far	

Recent Papers

The URL for this search is http://arxiv.org/find/astro-ph/1/ti:+AND+Strange+Star/0/1/0/all/0/1

Showing results 1 through 25 (of 119 total) for ti:(strange AND star)

1. astro-ph/0408217 [abs, ps, pdf, other] :

Title: Electric fields at the quark surface of strange stars in the color-flavor locked phase Authors: <u>V. V. Usov</u> Comments: 3 pages, no figures, Phys. Rev. D, in press

2. astro-ph/0407155 [abs, ps, pdf, other] :

Title: Strange Quark Matter and Compact Stars Authors: <u>Fridolin Weber</u> Comments: 58 figures, to appear in "Progress in Particle and Nuclear Physics"

3. astro-ph/0406162 [abs, ps, pdf, other] :

Title: Possible evidence of surface vibration of strange stars from stellar observations Authors: <u>Subharthi Ray</u>, <u>Jishnu Dey</u>, <u>Mira Dey</u>, <u>Siddhartha Bhowmick</u> Comments: 4 pages, 2 figures, using mn2e.cls. Accepted for publication in MNRAS

4. astro-ph/0403550 [abs, ps, pdf, other] :

Title: Surface gravity of neutron stars and strange stars Authors: <u>M. Bejger</u>, <u>P. Haensel</u> Comments: Accepted by A&A The URL for this search is http://arxiv.org/find/astro-ph/1/ti:+AND+neutron+star/0/1/0/all/0/1

Showing results 1 through 25 (of 300 total) for ti:(neutron AND star)

1. astro-ph/0408467 [abs, ps, pdf, other] :

Title: Type-I superconductivity and neutron star precession Authors: <u>Armen Sedrakian</u> Comments: 10 pages, 1 figure

2. astro-ph/0407091 [abs, ps, pdf, other] :

Title: Distinguishing Bare Quark Stars from Neutron Stars Authors: <u>Prashanth Jaikumar, Charles Gale</u> (McGill U.), <u>Dany Page</u> (UNAM), <u>Madappa Prakash</u> (SUNY Stc Comments: 8 pages, 5 figures; contribution to proceedings of the 26th annual Montreal-Rochester-Syracuse-T From Quarks to Cosmology, May 12 - 14 (2004), Concordia University, Montreal, Quebec, Canada

3. astro-ph/0406228 [abs, ps, pdf, other] :

Title: Effect of BCS pairing on entrainment in neutron superfluid current in neutron star crust Authors: <u>Brandon Carter</u>, <u>Nicolas Chamel</u>, <u>Pawel Haensel</u> Comments: 30 pages

4. astro-ph/0405262 [abs, ps, pdf, other] :

Title: The Physics of Neutron Stars Authors: J.M. Lattimer, M. Prakash Comments: 22 pages, 4 figures and 1 table Journal-ref: Science Vol. 304 2004 (536-542)

Some Of The Big Questions?

LIGO

FIG. 2: Mass-radius diagram for neutron stars. Black (green) curves are for normal matter (SQM) equations of state [for definitions of the labels, see [27]]. Regions excluded by general relativity (GR), causality and rotation constraints are indicated. Contours of radiation radii R_{∞} are given by the orange curves. The dashed line labeled $\Delta I/I = 0.014$ is a radius limit estimated from Vela pulsar glitches [27].

> J. M. Lattimer & M. Prakash, astro-ph/0405262

LIGO-G040443-00-W

• What is the NS/SQS max. mass; min radius? $(1.4-3.5 M_{\odot}? R = ?)$

• How fast can NS/SQS spin (up to 2 kHz?) and what controls their spin cycles?

•What are the final states of matter before collapse to BH, i.e., what's inside these stars, really?

• Are quark nuggets hitting the Earth? (Ice-9 Scenerios?)

for direct detection of GW's.

Laser

Beam Splitter **Recycling Mirror** Photodetector

observatory, "listening" for **GW's cosmic** spacetime vibrations.

Figures: K. S. Thorne gr-qc/9704042; D. Sigg LIGO-P980007-00-D

A. Vecchio on behalf of the LIGO Scientific Collaboration : GR17 – 22nd July, 2004

- **LIGO** The back of the envelope please... Approximate forms of the Quadrupole Formula $h = \Delta L / L \approx (G / c^4)(\ddot{Q} / r); \quad Q \sim MR^{-2}$ $\ddot{Q} \sim (MV^{-2})_{asym}; \quad h \sim 10^{-49} erg^{-1}(MR^{-2}f_{GW}^{-2})_{asym}.$ • Triaxial ellipsoid: $h \sim (G/c^4) \epsilon MR^2 4f_{rot}^{-2}/r \sim 10^{-26}$ (for ellipticity $\epsilon \sim 10^{-6}$, $f_{rot} = 200$ Hz, M = 1.4 M_{\odot}, $R = 10^6$ cm, r = 1 kpc = 3×10^{21} cm)
 - Precession: $h \sim (G/c^4) \sin (2\theta) \epsilon MR^2 f_{rot}^{-2}/r \sim 10^{-27}$ (for ellipticity $\epsilon \sim 10^{-6}$; wobble angle $\theta = \pi/4$, etc...)
 - LMXB Sco-X1: h ~ 10⁻²⁶ (balance GW torque with accretion torque)
 - R-modes: $h \sim (G/c^4) MA^2 R^2 (16/9) f_{rot}^{-2}/r \sim 10^{-26}$ (for saturation amplitude A ~ 10⁻³, etc...)
 - Pulsar Glitch h ~ (G/c⁴) $MA^2R^2f_{rot}^{-2}/r \sim 10^{-32}$ (for glitch amplitude A ~ 10^{-6} , etc...) LIGO-G040443-00-W

LSC Period/CW Search Group Search Techniques

• ~ 30+ members of the LIGO Science Collaboration.

Has developed
Coherent &
Incoherent Search
Methods

• Known, Targeted,and All Sky Searches are underway. $h_{\rm int}^2 = 2 \int_0^{T_{\rm coh}} |h(t)|^2 dt$ $SNR = h_{int} / \sqrt{S_n} \sim \sqrt{T_{obs}}$ $\langle h_c \rangle_{coh} = 3 \times 10^{-26} \frac{\sqrt{S_n}}{10^{-23} Hz^{-1/2}} \sqrt{\frac{10^7 s}{T_c}}$ $\langle h_c \rangle_{incoh} = 2 \times 10^{-25} \frac{\sqrt{S_n}}{10^{-23} Hz^{-1/2}} \left(\frac{1800s}{T_{coh}} \frac{10^7 s}{T_{ohs}} \right)^{1/4}$

Sensitivity Curves

The r-mode saturation amplitude was thought to be much larger in 2000

Coherent Power vs. T_{obs}

Incoherent Power vs. T_{obs}

Frequency Modulation

$$f(t) = (1 + \frac{\vec{v}(t)}{c} \cdot \hat{n}) \left[f_0 + \sum_{s=1}^{s} \frac{f^s}{s!} (t + \frac{\vec{r}(t)}{c} \cdot \hat{n})^s \right]$$

- The frequency is modulated by the intrinsic frequency evolution of the source and by the doppler shifts due to the Earth's motion
- The Doppler shifts are important for observation times $T \ge 5.5 \times 10^3 \sqrt{\frac{300 Hz}{f}}$ sec.

Schutz & Papa gr-qc/9905018; Williams and Schutz gr-qc/9912029; Berukoff and Papa LAL Documentation

Amplitude Modulation

Figure 9. Antenna response function for an interferometric gravitational wave detector. The interferometer is placed at the center of the surrounding box with Michelson arms oriented along the horizontal axes. The distance from a point of the plot surface to the center of the box is a measure for the gravitational wave sensitivity in this direction. The plot to the left is for + polarization, the middle one for \times polarization and the right one for unpolarized waves.

Figure: D. Sigg LIGO-P980007-00-D

 $h(t) = \hat{x} \cdot (Mh^{TT}M^{t}) \cdot \hat{x} - \hat{y} \cdot (Mh^{TT}M^{t}) \cdot \hat{y} = h_{+}(t)F_{+}(t;\mathbf{y}) + h_{\times}(t)F_{\times}(t;\mathbf{y})$ $h(t) = h_{+}[0.5(1 + \cos^{2}\boldsymbol{q})\cos 2\boldsymbol{j} \ \cos 2\boldsymbol{y} - \cos\boldsymbol{q} \ \sin 2\boldsymbol{j} \ \sin 2\boldsymbol{y}]$ $+ h_{\times}[0.5(1 + \cos^{2}\boldsymbol{q})\cos 2\boldsymbol{j} \ \sin 2\boldsymbol{y} - \cos\boldsymbol{q} \ \sin 2\boldsymbol{j} \ \cos 2\boldsymbol{y}]$

Maximum Likelihood

Likelihood of getting data x for model h for Gaussian Noise:

LIGO

$$P(x \mid h) = \frac{1}{\sqrt{2ps_1}} e^{\frac{-(x_1 - h_1)^2}{2s_1^2}} \frac{1}{\sqrt{2ps_2}} e^{\frac{-(x_2 - h_2)^2}{2s_2^2}} \frac{1}{\sqrt{2ps_3}} e^{\frac{-(x_3 - h_3)^2}{2s_3^2}} \dots$$

$$c^2 = \sum_j \frac{(x_j - h_j)^2}{s_j^2} = -2 \left(\sum_j \frac{x_j h_j}{s_j^2} - \frac{1}{2} \sum_j \frac{h_j h_j}{s_j^2} \right) \quad \text{Chi-squared}$$

$$h_j = f(h_0, \cos i, \Phi_0, \mathbf{y})$$

$$\frac{\partial c^2}{\partial h_0} = 0, \qquad \frac{\partial c^2}{\partial \cos i} = 0, \qquad \frac{\partial c^2}{\partial \Phi_0} = 0, \qquad \frac{\partial c^2}{\partial \mathbf{y}} = 0$$

Minimize Chi-squared = Maximize the Likelihood

The StackSlide Search

- An incoherent search method that stacks and slides power to search for periodic sources. (*P. Brady & T. Creighton Phys. Rev. D61* (2000) 082001; gr-qc/9812014.)
- The periodic search is computationally bound. A hierarchical approach that combines coherent & incoherent methods is needed to optimize sensitivity.
- Sources like LXMBs with short coherence times (~ 2 weeks) require incoherent methods.
- Mendell and Landry are developing the StackSlide Search for the CW group. (The group also uses Hough Transforms and Power Flux, for incoherent searches.)

- A. Stack the power.
- B. Slide to correct for spindown/doppler shifts.
- C. Sum and search for significant peaks.

LIGO Sky Distribution of Power Fake Pulsar and Fake Noise:

Sky Distribution of Power Fake Instrument Line and Noise

Gaussian Noise

Rayleigh Dist.C2 variable, with2 degrees freedom

C² **Distribution** –

Statistics

 $\tilde{n} = NormalizedFFT(n)$ $\tilde{n} = x + iy$ $|n|^2 = x^2 + y^2$ $P(x, y)dxdy = \frac{1}{\sqrt{2p}} e^{-x^2/2} \frac{1}{\sqrt{2p}} e^{-y^2/2} dxdy$ $x = r \cos f$ $y = r \sin f$ $P(r)dr = e^{-r^2/2} r dr$ $z = r^{2} = x^{2} + y^{2}$ $\frac{1}{2}dz = rdr$ $P(z)dz = \frac{1}{2}e^{-z/2}dz$

Statistics: False Alarm Rate; False Dismissal Rate and UL from LE

