LIGO I simulation using FFT Hiro Yamamoto / LIGO-Caltech
-A few news from LIGO I commissioning athermal compensation system
-phase camera
-LIGO I mirror phase map

- FFT tools
-Thermal lensing
-Beam splitter curvature
-Interpretation of results using modal model

Phase camera and thermal compensation system

- Phase camera
" $\mathrm{E}_{\text {IFO }}$: Field from interferometer
- SB-, CR, SB+ with modulation frequency of 25 MHz
" $\mathrm{E}_{\text {laser }}$: Field from laser frequency shifted by 75 MHz
" Demodulate $\mathrm{E}_{\text {IFO }}+\mathrm{E}_{\text {laser }}$ by 50, 75 and 100Mhz to measure SB+, CR and SB- separately
- Thermal compensation system (TCS)
" CO2 laser to heat ITMs
- Central heating : enhance NdYAG heating effect
- Annular heating : suppress NdYAG heating effect
" Somehow, differential heating, inline ITM cooler than offline ITM, preferred
" It seems SB imbalance is related

Phase camera image at dark port 2W Input, TCS : AX600-CY75

FFT tools

- Calculation of static fields in Core Optics system
" Orsay -> MIT
" Core optics phase map
" Thermal lensing effect
" Beam splitter curvature
- Propagation with magnification
" Virgo Physics Book, Volume 2 "OPTICS and related TOPICS", 3.1.7
» FFT pixel size can be scaled - 25 cm mirrors to mm detector
" Fields can be propagated through telescopes to actual detectors
- FFT lock vs LSC lock
" FFT lock uses only CR, LSC lock uses CR and SBs
" Lock FFT by itself -> Lock using ASQ,REFL,POB
" Arm lengths change by $10^{\wedge}-12 \mathrm{~m}$, Michelson lengths by $10^{\wedge}-9 \mathrm{~m}$
" Quantitative results affected, most of qualitative results OK

Effect of mirror aberration

Thermal lensing in FFT

- P. Willems calculated based on MIT model -

Gaussian and Annular

Beam splitter phase map

WA4K BS - curvature subtracted

concave ROC > 200km, convex $\mathrm{ROC}>720 \mathrm{~km}$

Mode disturbance in PRM
 - BS and ITM curvature and BS lens -

Reflection and transmission change field curvature

$\operatorname{TEM} 00($ out $)=\frac{1}{\sqrt{\left(1+i \alpha_{x}\right)\left(1+i \alpha_{y}\right)}}$ TEM00(in)

ITM differential heating
 §ొernoal and beam splitter curvature

Powver ocily

- Linear line : gaussian

Power on Symmetric port

$$
\mathrm{P}(\mathrm{x}, 0) \text { vs } \mathrm{x}^{2}, \mathrm{P}(0, \mathrm{y}) \text { vs } \mathrm{y}^{2}
$$

flat

flat

curved hot
$\stackrel{\text { cold }}{\square}$

flat hot
hot

SB gain vs differential heating

Reflection by a locked arm - CR~00, SB~00+02/20 -

$$
\begin{aligned}
& \alpha=\frac{z}{z_{0}}\left(1-\frac{R_{\text {Field }}}{R_{\text {ITM }}}\right) \approx \frac{z}{z_{0}}\left(n_{\text {subssrate }}-\frac{R_{\text {ITM }}}{R_{R M}}-\frac{R_{\text {ITM }}}{R_{\text {thermal }}}\right) \\
& E_{S B}=\frac{1}{1+i \alpha} E_{00}-\frac{i \alpha / \sqrt{2}}{(1+i \alpha)^{3}}\left(E_{02}+E_{20}\right)+O\left(\alpha^{2}\right)
\end{aligned}
$$

$$
\begin{aligned}
& E_{C R}=\frac{1}{1+i \alpha} E_{00}-\frac{i \alpha / \sqrt{2}}{(1+i \alpha)^{3}}\left(E_{02}+E_{20}\right)+O\left(\alpha^{2}\right) \Leftarrow E_{4} \\
& -2 \frac{1}{1+i \alpha / 2}\left(\frac{1}{1+i \alpha / 2} E_{00}-\frac{i \alpha / 2 / \sqrt{2}}{(1+i \alpha / 2)^{3}}\left(E_{02}+E_{20}\right)+O\left(\alpha^{2}\right)\right) \Leftarrow E_{7} \\
& =-\frac{1}{1+i \alpha} E_{00}+O\left(\alpha^{2}\right)
\end{aligned}
$$

Fields in mode mismatched FP

$$
E_{c a v}=\frac{t_{R M} \cdot E_{i n}}{(1-R)\left(1+C_{0} \cdot \alpha^{2}\right)}\left(E_{P R M, 00}-i \cdot \alpha \cdot C_{2} \cdot\left(E_{P R M, 02}+E_{P R M, 20}\right)\right)+O\left(\alpha^{3}\right)
$$

$$
\begin{gathered}
R=R_{0} \cdot \operatorname{Exp}\left[i \phi_{C R, 00}+i \phi\right], R_{0}=r_{R M} \cdot r_{I T M} \\
\phi_{C R, 00}=-2 k_{C R} L+2 \eta-\arctan (\alpha) \\
\phi_{m i x}=-\frac{1}{2} \cot (2 \eta) \cdot \alpha^{2}
\end{gathered}
$$

$$
\phi=-2 k_{S B} L+\phi_{m i x}
$$

$\operatorname{SBPower}\left(k_{S B}\right)=$

$$
F\left(k_{S B} L+f_{1}(\eta)+f_{2}(\alpha)\right)
$$

$\operatorname{SBPower}\left(k_{S B}\right) \neq \operatorname{SBPower}\left(-k_{S B}\right)$

$$
\begin{aligned}
& C_{0}=\frac{(1-i \cdot \cot (2 \eta)) \cdot R}{2(1-\operatorname{Exp}(i 4 \eta) R)} \\
& C_{2}=\frac{\operatorname{Exp}(i \cdot 2 \eta)}{\sqrt{2}(1-\operatorname{Exp}(i \cdot 4 \eta) R)}
\end{aligned}
$$

FFT vs LSC lock

n(ITMx)-n(ITMy)

$0.96-0.96$ Symmetric Heating

Dark Port sideband profile by FFT - after LSC lock -

